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Preface

These notes cover the material of a series of lectures given at the
University of Newcastle upon Tyne on Takesaki's paper: 'Duality for
crossed products and the structure of von Neumann algebras of type III'
[16]. Since the appearance of Connes' thesis [2] and Takesaki's paper,
the theory of crossed products has become very important in von
Neumann algebras. An elementary and rather detailed treatment of the
basics of this theory is given here, mainly intended for people who want
an introduction to the subject. In part I, 'Crossed products of von
Neumann algebras', I deal with general continuous crossed products.
I introduce the notion in detail and give a proof of two important results.
The first one is the commutation theorem for crossed products. It was
obtained by Takesaki [16] in a special case, and by Digernes [4, 5] and
Haagerup [8] in more general cases. The proof given here does not
depend on the theory of dual weights, nor does it use any left Hilbert
algebra. The second result given is Takesaki's duality theorem for
crossed products with commutative groups.

In part II, 'The structure of type III von Neumann algebras', crossed
products with modular actions are considered, that is those with the one-
parameter group of *-automorphisms obtained by the Tomita-Takesaki
theory, and I treat the structure theory of type III von Neumann algebras
going with it [16]. Treatment is restricted to the case of a-finite von
Neumann algebras so that we can work with faithful normal states, and
again our approach is different from the original one.

I would like to express my thanks to Professor J. Ringrose and to
the other members of the department of pure mathematics of the University
of Newcastle upon Tyne for their warm hospitality during my visit. This

work was partially supported by the Science Research Council.

June 1976 A. Van Daele
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Part I Crossed products of
von Neumann algebras

1. INTRODUCTION

A covariant system is a triple (M, G, a) where M is a von Neumann
algebra, G is a locally compact group and a is a continuous action of
G on M, that is a homomorphism a : s - as of G into the group of
*-automorphisms of M such that for each x E M, the map s - as(x)
is continuous from G to M where M is considered with its strong
topology. To such a covariant system is associated in a natural way a
new von Neumann algebra, called the crossed product of M by the
action a of G, and denoted here by M ®a G [16].

Similarly also covariant systems over C*-algebras are defined.
In fact they have been known by mathematical physicists for some time
already (see e. g. [7]). There they arise naturally because of time
evolution of the physical system.

Here we will only be concerned with covariant systems over von
Neumann algebras. Also they arise in a quite natural way, indeed the
Tomita-Takesaki theory associates a strongly continuous one-parameter
group of automorphisms to each faithful normal state on a von Neumann
algebra [13, 15, 17], and clearly such a group is nothing else but a con-
tinuous action of R.

The crossed product construction can be used to provide new,
more complicated examples of von Neumann algebras. A special case
of this, the group measure space construction, was already used by
Murray and von Neumann to obtain non type I factors [6]. Recently also

Connes used the crossed product construction to obtain an example of a
von Neumann algebra, not anti-isomorphic to itself [3].

In connection with the Tomita-Takesaki theory however crossed
products are also used to obtain structure theorems for certain types of
von Neumann algebras. Among those we have the results of Connes about
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the structure of IIIX-factors with 0 < A < 1 [2] and the result of
Takesaki which states that every type III von Neumann algebra is iso-
morphic to the crossed product of a type Ho. von Neumann algebra with
some continuous action of R [16].

In part II of these lecture notes we treat Takesaki's structure
theorem. In this part we deal with the notion of general continuous

crossed products. This notion is introduced in section 2. If (M, G, a)
is a covariant system, and if M acts in the Hilbert space 3C, then the
crossed product M ®a G will act in the space 6C ® L 2 (G) where L2 (G)

is the Hilbert space of square integrable functions on G with respect to
some left Haar measure.

In section 3 we define an action 0 of G on M ® 63(L2(G))
where 63(L2(G)) is the von Neumann algebra of all bounded operators on

L (G) and we show that M ®a G can be characterized as the fixed
points in M ® 63(L2 (G)) for the automorphisms I Bt It E G }. This

result was obtained by Takesaki [16] in a special case, and by Digernes
[4, 5] and Haagerup [8] in more general cases using the theory of dual
weights. If G is compact the result can easily be obtained using the
normal projection map f 6t dt onto the fixed points, where dt is the
normalized Haar measure on G. In our approach we use a carefully
chosen approximation procedure to make a similar argument work also
if G is not compact (see also [18]). If the action a is spatial, an
expression of the commutant of M ®a G follows.

Finally in section 4 we consider the abelian case. If G is abelian
it is possible to associate to a covariant system (M, G, a) a new co-
variant system (M, G, a) in a canonical way. For 1VI one takes
M ®a G, and a is a continuous action of the dual group G on M ®a G.
The action a is defined in such a way that the crossed product
(M ®a G) ®a G of M ®a G by the action a of G is isomorphic to
M ® 63(L2 (G)). This makes a duality structure possible if M is properly
infinite and G separable so that M 0 63(L2 (G)) is isomorphic to M
again. Then the covariant system canonically associated to (M, G, a)
is in some sense equivalent to the original one (M, G, a) [16]. Our

method here is very much dependent on operators similar to the unitary
U in L2 (G X G) defined by (Uf)(s, t) = f(ts, t). They enable us to work
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with tensor products and the structure becomes simpler and more
transparent.

For the theory of von Neumann algebras we refer to the books of
Dixmier [6] and Sakai [14]. For the Haar measure we refer to [1]. In

the case where the groups are a-compact, in particular if G = R as
in part II, many other books treating Haar measure and abstract harmonic
analysis will do [9, 11].

2. CROSSED PRODUCTS OF VON NEUMANN ALGEBRAS

Let M be a von Neumann algebra acting in a Hilbert space 3C.
Let G be a locally compact topological group and let a : s - as be a
homomorphism of G into the group of *-automorphisms of M such that
for each x E M the map s - as(x) is continuous from G into M where
M is considered with its strong topology. Such a homomorphism is

called a continuous action of G on M. In the case G = R a continuous
action is of course a strongly continuous one-parameter group of
*-automorphisms. Very often the triple (M, G, a) is called a covariant
system. Remark that equivalently one can consider M with the weak,
a-weak, or-strong or Q-strong* topology. A typical example, and in fact
a very important one, is obtained in the case of a von Neumann algebra
M acting in fC and a continuous unitary representation a : s - as of
G in 3C with the property that as xas E M for all x E M and S E G.
Then as(x) = as xa* is easily seen to define a continuous action of G
on M.

To a continuous action a of a locally compact group G on a von
Neumann algebra M can be associated a new von Neumann algebra,
called the crossed product of M by the action a of G, and denoted by
M 0a G. Notations like R(M, a) and W*(M, G) are also used. In

this section we will carefully introduce this new von Neumann algebra.
We will also give some basic properties of the operators involved. First
however we will need to study the Hilbert space in which it acts.

Let ds denote a left invariant Haar measure on G and let
L2 (G) be the Hilbert space of (equivalence classes of) square integrable
functions from G into C with respect to the measure ds. Then the
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crossed product will be a von Neumann algebra acting in the Hilbert
space tensor product 3C 0 L2(G) of JC and L2(G). As we shall see,
in the theory of crossed products, it is important to consider elements
in 3C ® L2(G) as &C-valued functions on G. Let us first make this
precise.

2. 1 Notation. Denote by Cc(G, JC) the complex vector space
of 3C-valued functions on G with compact support. Let the scalar
product in JC be denoted by Then for every pair , 7) ECc(G, 3C),
the function s - 77 (s)) will be a continuous, complex valued
function with compact support in G. Then define

71) = !((s), n](s)) ds.

It is then easily verified that this expression gives a scalar product on
Cc(G, 3C). The completion of Cc(G, 3C) with respect to this scalar
product is denoted by L2(G, cC).

It is justified to call this space L2(G, fC) as it can be shown that
the set of 3C-valued functions on G with the following properties:
(i) 77 o is measurable for all il o E 3C,

(ii) there is a separable subspace JC0 such that (s) E JC0 for all
s E G,

(iii) 11 (- ) 11 E L 2 (G)

is itself a Hilbert space with scalar product defined as above, and that
Cc(G, X) is a dense subspace of this Hilbert space.

However it turns out to be much more convenient to consider
elements in L2(G, 3C) as elements of the completion of Cc(G, 3C) than

as functions. Therefore, as we will not need this result anyway, we
refer to an appendix (A) for a proof of the above statement.

In fact, what is much more important in our treatment is that
L 2 (G, 3C) can be canonically identified with 3"C ® L 2 (G). This is done
in the following proposition.

2. 2 Proposition. There is an isomorphism U of 5C 0 L2(G)
onto L2(G, JC) such that
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0 f))(s) = f(s).o

for any o E JC and f E Cc(G), the set of complex-valued continuous
functions with compact support in G.

Proof. Let fl, f2, ... , fn E Cc (G) and 1, 2' ... , 4n E 3C.
n

Define : G - XC by c(s) _ for s E G. Then clearlyi=1 1 1

EC
c
(G, fC) and

114 11 2 =(4, 4)= f (c(s), 4(s))ds
n
Z f f i(s)fsj ( i, )ds

n
E f

i, j=1 1 J 1

n n
_ (> 4.®f., Z Of

i=1 1 1 j=1 J J

n
2

i=1

It follows that we can define a linear operator U from the algebraic
tensor product of JC with Cc(G) into Cc(G, 3C) by

n
U(I ® f.) Also U is isometric and therefore extends

i=1
uniquely to an isometry from the Hilbert space tensor product
X 9 L2(G) into L2(G, 3C), the extension is still denoted by U. It
remains to show that U is onto, so that indeed U is an isomorphism.
For this it is sufficient to show that functions of the form above are
dense in Cc(G, JC). So let o E Cc(G, 3C), let K be the compact support
of o and let V be an open set with finite Haar measure such that
K C V. Take e> 0 and for each s E K choose a neighbourhood V

s of

s such that Vs c V and 11 ko(t) - o(s) 11 < e for all t E Vs. Then
choose points sl, s2 ... sn in K such that K S Vs UV

s ... U Vs
1 2 n

and positive functions h1, h2 ... hn in Cc(G) such that the support of
h. lies in V for all j = 1, n, and such that

sj
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n n
0 < 1 h.(s) < 1 for all s E G and I h. (s) = 1

j=1 J n j=1 J

for all s E K. Then if we define _ we get

n n
(s) - ko(s) II = lI I hj(s)k0(sj) - E hj(s)k0(s) II

j= j

n
<

jhj(s)
II ka(s.) - 0(s) II

n
< Z h.(s)se

j=1 J

for all s E G. Finally since . and 0 have support in the set V we get

II -o 11

Epz

This proves the result.

where p is the Haar measure of V.

In what follows we will always identify L2(G, JC) and
JC ® L2(G) by means of this isomorphism. So for any E 3C and

f EC (G) we will consider ® f as a function on G with values in fC
given by ( 0 f)(s) =

So far we have considered the space in which the crossed product
is going to act. Now we come to the operators that will generate the

crossed product.

2. 3 Lemma. For every x E M and E CC(G, 3C) we have that

the function 1, defined by 1 (s) = a (x) 4(s) is again in Cc(G, fC).
s

Moreover II 1 II < Il x 11 11
II .

Proof. Remark first that indeed k1 is a function of G in 3C
as c(s) E 3C for every s and a

s-1
(x) E M and M acts in X Clearly

1 has also compact support, so we must show continuity. This follows

from the calculation below with s fixed in G and s - s
0 0

Indeed Sl(s0)II = Ila -1(x)c(s) - a -1(x) (SO)II
s s0

<_ Ila -1(x)(k(s) - (s0))II + II(a -1 (x) - a -1(x)) (so) 11
s s s0

<_ llx1111 (s) - (s0)II + II (a 1(x) - a 1(x))k(s0)II
s s

0
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where the first term tends to zero as is continuous and the second
term because the action is continuous, that is s - as(s). 0 is continuous,
which is used here with 4o = 4(s0).

Finally

11X1112 = f 11 1(s)112ds

= f Il a
s

c

f 11a -1(x)11211 (s)112ds - Ilx112 f11 a(s)112ds
s

=
Because of lemma 2. 3 the following definition makes sense.

2. 4 Definition. For every x e M we define a bounded operator
7r(x) on L2(G, JC) by

(W(x))(s) = a for E Cc(G, SC).
s

If there are different actions around we will occasionally use 7T a instead

of 77.

The crossed product will, among others, contain all the operators
11(x) with x E M, therefore let us study them a little more.

2. 5 Proposition. a is a faithful normal *-representation of M
in L 2 (G, 3C).

Proof. Using the fact that as is a *-automorphism of M for
each s E G, a straightforward calculation shows that 71 is a *-represen-
tation.

Let us show that 7r is faithful, therefore assume x E M and
11(x) = 0. Take o E 3C and f E Cc(G) and let = 9) f. Then

0 = (s))ds = f(a
s

= If(s) I2ds.s s

Because this holds for all f e Cc(G), and because (a 1(x) o,o) is
s

7



continuous in s, we have that (a 1(x)0, o = 0 for all s, in
s

particular o) = 0. Again this holds for all 0 e 3Q so that

x = 0. This proves that 71 is faithful.

To prove that 77 is normal, let 1xi }iEl be a bounded, increasing
net in M+ with x as supremum. As 7r is a *-representation also
IT(xi) will be bounded and increasing and therefore will increase to some
operator on L2(G, XC), call it Y. As xi < x for all i we also have
n(xi 7r(x) so that y < n(x). We must show y = 7r(x).

First let f E Cc(G) and p e 3C, then with _ 0 G f we have as
before

1(a 40) (f(s) 12ds.

Now s - (a 1(xi) o, Q) is a net of continuous positive functions, in-
s

creasing to the function s - (a 1(x)%1 which is also continuous.
s

By Dini's theorem [10] we have uniform convergence on compacta. In

particular we have uniform convergence on the support of f, so also the
integrals will converge. Hence So we have

Now as y < n(x) it follows from

that also (71(x) - y) = 0 or 7r(x) = y . This implies a(x) = y because
functions of the form _ o Of with o E 3C and f E Cc(G) span a
dense subspace.

It is mainly because of the definition of n(x) that we must work
with L 2 (G, 3C) instead of 3C ® L 2 (G). It is good to keep in mind that
roughly speaking 71(x) is the multiplication operator in L2(G, JC) by
the function s - a (x). Multiplication operators will play an important

s
role in the next section. Before we continue let us consider an example.

2. 6 Example. Assume here that G is a finite group with n
elements t sl, s 2, ... , sn 1. Then using the appropriate normalization
of the Haar measure, L2(G, fC) can be identified with the direct sum
JC G JC ®... 3C of n copies of 3C by means of the isomorphism

E L2 (G, JC) - (t(s1), (s2) ... Vs n)).
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Then in matrix notation we get the following expression for A(x):

0

Si

0 a -1(x) ... 0

s
2

0 0 ... a 1(x)
sn

In the next section we will obtain more information about the relation of
n(x) with the tensor product structure of L2(G, 3C). Now we define a

representation of G in L2(G, 3C). This will provide us with the second
type of operators that will generate the crossed product.

2. 7 Definition. For every t E G we define a bounded operator
A(t) on L 2 (G, 3C) by

(A(t))(s) = 4(t 1S)

with E C(G, JC) and s E G.
It follows easily from the invariance of the Haar measure that

such an operator exists and is isometric.

2. 8 Proposition. A is a strongly continuous unitary representa-
tion of G in L 2 (G, 3C).

Proof. It is straightforward to verify that A is indeed a repre-
sentation of G and that A(t) is unitary for all t E G. The proof of the

strong continuity can either be obtained in a similar way as in the case
L 2 (G), or can be obtained from the corresponding result in L 2 (G).

Indeed, let = 0 9) f with 0 E 3C and f E Cc(G). Then if we denote
left translation by t- in L2(G) by At we get

(A(t))(s) = (tls) = 0 i) Atf)(s).

9



It follows that X(t) = 1 9) Xt and the strong continuity in L2(G, JC)
follows from the one in L2(G) [11, p. 118].

The following relation shows that in the representation n the
automorphisms at are unitarily implemented by the operators A(t).

2.9 Lemma. For all x E M and t E G we have
A(t)n(x)X(t)* = n(at(x)).

Proof. Let E CC(G, 3C) and S E G, then

a -1
(x)(A(t)*)(t-'s)

s t

= a (n(at(x)) )(s)

s

and the result follows.

It follows from this lemma that linear combinations of operators
of the form n(x)A(t) with x e M and t E G form a *-algebra. Indeed,

let x, y E M and t, s E G then

n(x)A(t)n(y)X(S) = n(x)X(t)n(y)X(t)*A(t)X(s)

= n(x)n(at(y))X(ts)
= n(xat(y))A(ts)

and

(n(x)A(t))* _ A(t)*n(x*) _ 1)=n(a -1(x*))A(t-1).
t

We now come to the definition of a crossed product.

2. 10 Definition. The crossed product of M by the action a of
G is the von Neumann algebra generated by the operators
{ n(x), A(s) Ix E M, S E G) and is denoted by M 0a G. Because of the

preceding it is the closure of the *-algebra of linear combinations of
products n(x)X(s) with x E M and s c G.

2. 11 Example. Assume that G only has two elements { e, s )

where e is the identity. Then as in 2. 6 the space L2(G, aC) is identified
with JC ® 3C and for n(x) we get

10



fx 0

(x) _
0 C1 W

as here ae(x) = x and a -1(x) = as (x). Also

0 1

X(s) _
1 0

s

and as M ®a G = { 71(x) + rr(y)A(s) Ix, y E M } we have in this case that
the elements of M ®a G are precisely those of the form

fx y

as (Y) as(x)

with x, y E M.
It is straightforward to check that those operators indeed form a

*-algebra.

There are various other ways to construct the crossed product
M ®a G. A particularly easy one to work with can be obtained in the
case where a is implemented.

2. 12 Proposition. Assume that there is a strongly continuous
unitary representation a : s - a of G in JC, such that as(x) =as x as

S
for all x E M and s E G. Then with the unitary operator W defined on

L2(G, 3C) by (W ) (s) = ask(s) for . E Cc(G, JC) and S E G, we obtain

77(x) = W*(x ® 1)W

and

A(s) = W*(as 9) As)W.

In particular ME)a G is spatially isomorphic to the von Neumann algebra
in 3C ® L2(G) generated by the operators {x ® 1, as 0 Xs Ix EM, S EG }

(recall that As is left translation by s-1 in L2(G)).

Proof. It is easily seen that W is well defined by
(W )(s) = as4(s) for E Cc(G, 3C), that it is unitary and that
(W * 4)(s) = as (s). Now if x E M we can define an operator x on
L2(G, 3C) by x4(s) for 4 E Cc(G, 3C). If is of the form

11



o Of with o E 3C and f E Cc(G) we get x(s) =

0
x and x 1

and that

((x 0 1))(s) = x(s).

Then

(W *(x ®1)W )(s) = a*((x ®1)W )(s) = a* x(W )(s) = a* xas (s)

a -1(x)(s) = (i(x))(s)
s

proving r(x) = W*(x ® 1)W.

Similarly (as ® A5)(t) = as.(s-lt) for E Cc(G, JC) so that

(W*(as 0 x )W )(t) = at((as ® As)W )(t)

= atas(W )(s-It)
= a -1 a -1 (S-1t)

t s s t
_ (s-1t)

_ (A(s))(t)
and

A(s) = W*(as ® As)W.

In many situations it is much easier to work with the form
I x ® 1, as ®Xs I X E M, S E G 1, as we will see e. g. when we treat the
duality theorem in section 4. From propositions 2. 5 and 2. 8 and lemma

2. 9 it follows that there is always a faithful normal representation of M
in which the action is unitarily implemented in the above sense. This,
together with the following proposition shows that in fact it is no restriction
to assume that the action is unitarily implemented, and so that one can
as well work with the simpler form above.

2. 13 Proposition. Let M and N be von Neumann algebras,
and T an isomorphism of M onto N. Suppose a and ( are continuous
actions of G on M and N respectively, related by T(at(x)) = fit(T(X))

12



for all x E M and t E G. Then there is an isomorphism 'f of M ®a G
onto N 9) a G.

The proof of this proposition can be obtained using the structure
of isomorphisms (see [16]). We do not give this proof here as it will
follow easily from later results in section 3.

3. THE COMMUTATION THEOREM FOR CROSSED PRODUCTS

At the end of the previous section we obtained another expression
for the crossed product, more related to the tensor product structure of
L2(G, fC) = X ® L2(G). In this section we will get still another character-
ization; namely we will show that M ®a G is the fixed point algebra in
M 9) B(L(G)) for a certain action of G on M 0 (3(L(G)). In the case
where a is spatial this yields a characterization of the commutant of
M ®a G. We first prove the following.

3.1 Lemma. M 0 G c M® 6 (L2(G)).

Proof. We have seen that X(t) = 1 ®Xt so that obviously
A(t) E M 0 6 (L2(G)). So the proof will be complete if we show that 11(x)

and x' 0 1 commute for every x E M and x' E M' as this will imply
that 11(x) E M 0 63(L2(G)). Now as in the proof of proposition 2. 12 we

have that (x' 9) 1) E Cc(G, XC) for each E Cc(G, 3C) and that

((x' 0 1) ) (s) = x' (s). Thus

(11(x)(x' 0 a (x)x' (s)
s

= x'a
s

_ ((x' 0 1)11(x) )(s)

so that 11(x)(x' 9) 1) = (x' 9) 1) 11 (x).

LZ(G), so (Atf)(s) = f(t-1s) for f E L2(G). We will also use right
translation, so define pt for each t E G by (ptf)(s) = o(t)2f(st) where

Now we define an action B of G on M 0 6(L2(G)).

3. 2 Notations. As before let at denote left translation on
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f EL (G) and 0 is the modular function of G. Then also p is a
continuous unitary representation of G in L2(G) [see 11, p. 118].
Denote by adpt the mapping a - pt a pt from (i;(L

2
(G)) into itself. As

we remarked before t - adpt will be a continuous action of G on
(i3(L2(G)). Then define Bt on M 0 (i3(L2(G)) by Bt = at 0 adpt. It is
fairly easy to see that 6 is again an action of G on M 0 63(L2(G)). The

continuity of 6 follows from the following proposition.

3. 3 Proposition. Let a and a be continuous actions of G on
von Neumann algebras M and N respectively, then yt = at 0 At defines
an action y of G on M 9) N which is also continuous.

Proof. First remark that yt is defined by yt(m 0 n) = at(m)O(3t(n)
and that yt is indeed a *-automorphism of M 9) N [14, p. 67]. It is
also immediate that y is an action of G. Because M and N are con-
sidered with their strong topologies instead of norm topologies the
continuity of y is not obvious but requires an argument. Suppose first

that a and 6 are spatial. So, if M and N act in X and JC
respectively, there are continuous unitary representations a and b of
G on 3C and 3C respectively such that at(x) = atxat and Qt(y) = btybt
for x E M and y E N. Then ut = at 0 bt is well defined and u is again
a continuous unitary representation of G on 3C 0 X. Indeed t - ut
will be continuous on linear combinations of vectors of the form

1
®2

with k1 E 3C and 2 E 3C and they are dense. Now at(x) 0 /3t(y) =
ut(x CD y)ut so that yt(z) = utz ut for all z E M ® N and the continuity
of y follows.

In the general case there are normal faithful *-representations
7r1 of M in 3C1 and n2 of N in 3C2, and continuous unitary repre-
sentations a and b of G in JC1 and 3C2 respectively such that
nl(at()) = at7r1(x)at and r2(at(x)) = btr2(x)bt. Again if ut = at 9) bt
and n = nl & n2 then n(yt(z)) = utn(z)ut. So t - n(yt(z)) and hence
t - yt(z) is strongly continuous, because also n is a normal faithful
*-representation of M 0 N.

Let us now come back to the action B of G on M 9) a 3(L2(G)).

It is obvious that 0t(X(s)) = A(s) for all t, s E G as left and right trans-

14



lations commute. As we will see also 0t(ir(x)) = n(x) for all t E G and
x E M so that 6t(x) = x for all x E M &a G. The main difficulty however

is to show that any fixed point in M 9) 63(L2(G)) is in M 0a G.
In our approach we will essentially work with the map x -. f 0t(x)dt.

This is no problem when the group is compact. In fact, provided the
Haar measure is normalised, this gives a normal projection onto the
fixed points. Because G need not be compact we will have to use the
appropriate approximation. We start with a general basic lemma.

3.4 Lemma. Let R E M 0 63(L2(G)) and K a compact set in G,
then fK 6t(x)dt is well-defined in the or-weak topology on M 9) 63(L2(G))

and the map

x + fK 6t(x)dt

is a-weakly continuous.

Proof. Denote for a moment M = M ®63(L (G)) and
fC 9) L 2 (G). Let , 71 E C, then t - (6t(x) , ) is continuous

and we can define i7)dt. This expression is clearly linear
in and conjugate linear in 77 and because

I 77)dtI < n)Idt
:5 11 SE 1111 d1111 7111 fKdt

we get the existence of a bounded operator y such that

77) = 77)dt for all x,71 E R.

Now if z E M', the commutant of M, then

(6t(x)z 71) = (z6t(x) , 71) _ (6t(x) , z * 71)

so that also

_(y,z*71 =CZy, 77k.77)

Hence yz = zy and y c 1VI.
Next let 0 be any a-weakly continuous linear functional on M,

then 0 is approximated in norm by a sequence 0n of linear combinations
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of functionals of the type x -, q ). For any $n we have

$n(y) = fK on(6t(x))dt

so that

$(Y) - fK 0(6t(x)dt I I $(y) - $n(Y) + fK I $(Bt(x)) - $n(et(x)) I dt

II$ - On 1111 YII + II$ - On 1111 R 11 fK dt

so that also $(y) = fK $(9t(x))dt and the integral exists in the or-weak
topology.

It remains to show that the map x - fK 0t(x)dt is normal because
that implies a-weak continuity. So let {xi } be an increasing net of
positive elements in M with supremum x. For any E 3C we will have

that (0t(x1 )41 ) T (0t(x)4, ) for each t and as in the proof of
proposition 2. 5 we can use Dini's theorem to get that

Therefore fK 6t(xi)dt a fK Bt(x)dt and the proof is complete.

To get into the fixed points for B, it really ought to be possible
to integrate over the whole group G. In general the integral over G of
0t(x) will not be defined. However because of the very special form of 0
here, it will be defined for enough elements in M 9) 63(L2(G)) to allow an
approximation procedure. The main reason for this is that pt is a
translation, so that also adpt acts as a translation on multiplication
operators, and similarly 0t. Therefore multiplication operators provide
us with the right objects in our approximation procedure.

3. 5 Notation. Let f E Cc(G), then we denote by mf the multi-
plication in L2(G) by the function f, so (mfg)(s) = f(s)g(s) for all
g EC

c
(G). Similarly we denote by m(f) multiplication by f in L2(G, 3C),

so f(s)g(s) for all E Cc(G, 3C'). Also here we will have
that m(f) = 1 9) mf. Indeed lets E 3C and g E Cc(G) then

(m(f)(o 0 g))(s) = (mfg)(s) o = (% 0 mfg)(s)
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The following lemma is crucial.

3. 6 Lemma. If f E Cc(G) then f Bt(m(f))dt = Jf(t)dt 1 in the

01-weak topology where 1 is the identity operator on L2(G, 3C).

Proof. Let us first see what 0t(m(f)) does. By definition

t(m(f)) = 1 ® ptmfpt. Take g E Cc(G), then

(Ptmfptg)(s) = A(t)2(mfp*g)(st)

= 0(t)2f(st)(ptg)(st)

= f(st)g(s).

This implies that (0t(m(f)) ) (s) = f(st) (s) for any E C(G, SC). Now

let h E Cc(G), then 0t(m(f))m(h) will be multiplication by the function
Ot(s) = f(st)h(s). Because h and f have compact support, and a product
of compact sets is compact, the function 0t will be identically zero for
t outside some compact set, and hence t - 0t(m(f))m(h) will have
compact support. Then in a similar way as in lemma 3. 4,
f 0t(m(f))m(h)dt exists in the a-weak topology. Then let , 77 ECc(G, SC),
we get

f (8t(m(f))m(h)4, 77)dt = 77(s))ds)dt

= J f(st)dt)ds
= f f(t)dt ii(s))ds
= f 77).

(We may use Fubini here as we are only integrating over compact sets. )
Hence

f 0t(m(f))m(h)dt = J f(t)dt m(h). (*)

Next let E L2(G), then there is a sequence of compact sets Kn, such
that Kn increases to UK

n containing the support of . Then choose an
increasing sequence hn E Cc (G) with 0 hn s 1 and hn = 1 on Kri
If now f ? 0 we will have 0 as 0t(m(f)) and
m(hn) are commuting positive operators. Because hn is increasing,
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also 4) will be increasing. Finally

II m(hn) - II 2 = J 11hn(s) (s) - (s) 11 Zds < JG\K II c(s) II Zds 0

n

as Kn increases to UK
n

containing the support of . Therefore

(0t(m(f))m(hn) , ) 9 (0t(m(f)) , )

while also From (*) we had already that

J(et(m(f))m(hn), )dt = f 4)

and then by the monotone convergence theorem we have

J 4) .

Now as any positive normal functional 0 can be obtained as a limit of an
increasing sequence of positive linear combinations of vector states,
again by the monotone convergence theorem it follows that

f O(et(m(f)))dt= f f(t)dt o(1).

It then follows by linearity that the integral f 0t(m(f))dt exists in the
or-weak topology and that it equals f f(t)dt 1. This completes the proof.

3. 7 Lemma. Let f and g E Cc(G), then for all x EM0G(L2(G))
we have that f 0t(m(f)x m(g))dt is well defined in the a-weak topology,

and the expression is a-weakly continuous in x.

Proof. Let , 77 E L 2 (G, 3C), then

1(0t(m(f)Xm(g)) , 77)I < IIxI111et(m(g)) Illlet(m(f))n 11

where as usual f(s) = f (s. Now from lemma 3. 6 we know that

II et(m(g)) II 2 = (0t(m(99)) , )

is integrable over t so that t - 11 et(m(g)) it is an L2-function. Similarly

t'' 110t(m(f))n 11, and because the product of two L2-functions is L1 we
have that t - (0t(m(f)x m(g)) , 1) is integrable. Furthermore
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77 )dtI IIX11fIIet(m(g)) IIII9t(m(f))iIIdt

IIXII (f 11 et(m(g)) II Zdt)2 (f 110
t(M(f)

)fl II
2dt)2

= IIXII(fIg(t)IZdt)2(fIf(t)IZat) i IIXII IIXII

= IIXII IIgII IIfII II k1111 n 11 -

Then as in lemma 3. 4 there is a y E M 9) 63(L (G)) such that

0 = f n)dt

for all , 17 E L2(G, 3C).
Next suppose g = f and X > 0, then as in the proof of lemma 3. 6

we can use the monotone convergence theorem to get that

06) = f 4(et(m(f)xm(f)))dt

for any positive normal functional 0. Then by polarization also
0(y) = f O(et(m(f)Xm(g)))dt in general.

Finally to prove or-weak continuity, let E Cc(G, fC), then

t -(0 t(m(f)xm(f)) , )

has compact support as (0t(m(f)))(s) = f(st) (s) and f and have

compact support. It then follows from lemma 3. 4 that

X- f (6t(m(f)xm(f)4, )dt

is normal. As in the proof of proposition 2. 5 this is sufficient to conclude
that

x- f 0t(m(f)Xm(f))dt

is normal and therefore a-weakly continuous. The result then follows by

polarization.

3.8 Lemma. If X E M and f E Cc(G) then

f et(x 0 mf)dt = f f(t)r(at(x))dt

in the a-weak topology.
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Proof. The first integral exists because of lemma 3. 7 while the
second can be shown to exist as in lemma 3. 4. Take E C(G, X),
then as before

t - (0t(x 9) mf) ,

has compact support and

J(9t(xO mf) , 4)dt = f f (s))ds dt

= f f ds

= JJ f(u)(a ds
s

= JJ

f du.

The calculation is quite similar as in lemma 3. 6. Also here we can use
Fubini's theorem as we are always integrating on compact sets.

This lemma shows already that 0s(7i(x)) = n(x) for all x E M and
s E G. Indeed, apply 0s to the equality in lemma 3. 8. This can be done
as the integrals exist in the v-weak topology and *-automorphisms are
a- weakly continuous.

So f 0s(0t(x 9) mf))dt = J f(t)9s(n(at(x)))dt. But

j 0s(0t(x 9) mf))dt = f 0st(x 0 mf)dt = J Bt(x ® mf)dt so that
f f(t)0s(7T(at(x)))dt = J f(t)n(at(x))dt. This holds for all f E Cc(G) so
that 0 (n(at(x))) = n(at(x)) for all s and for all t. Hence 6 (n(x)) = N(x)-

Proposition 2. 13 can now also be proved using this result. We
will do this at the end of this section. We should remark that lemma 3. 8
can be obtained somewhat more directly but we need the different steps
anyway in what follows.

So we have 8 (n(x)) = n(x) and we had already that 0s(A(t)) =X(t).
Hence 0s(x) = 5E for all x E M ®a G. We now proceed to show that
actually any fixed point is in M 0a G.

3. 9 Lemma. For all f, g E Cc(G) we have that

J 0t(m(f)5E m(g))dt E M 0a G for all x E M 0 6 (L2(G)).
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Proof. First take x of the form x 0 mhAs with x e M,
S E G and h e C(G). Then

0t(m(f)Xm(g)) = Ot(x 0 mfmhxsmg)

= 0t(x 0 m0XS)

= 0t(x 9) m0)X(s)

where O(u) = f(u)h(u)g(s-1u).

In any case, by lemma 3. 8 we get

f 0t(m(f)xm(g))dt = f ¢(t)71(at(x))A(s)dt E M ®a G.

Now the operators m
h

Xs with h E Cc(G) and S E G span a a-weakly
dense subalgebra of iB(L2(G)) (see appendix B) so that by the o-weak
continuity of the expression in x (lemma 3. 7) we obtain the present
lemma.

If the group G is compact we would get the result here already.
Since with f = g = 1 we would have that f 0t(x)dt E M Oa G for all
x E M 0 03(L2(G)), and if x is a fixed point we would get x E M 0a G.
The general proof that follows is entirely based on the same principle
but uses an approximation argument. We need one more lemma.

3. 10 Lemma. Let h E Cc(G) and K compact. Then the
function OK defined by OK(s) = JKh(st)dt is again in Cc(G). Moreover
m(OK) = JK 0t(m(h))dt and m(OK) converges to f h(t)dt 1 in the

a-weak topology when K increases to G.

Proof. It is well known that 0K is again continuous and has
compact support [11]. Now take E Cc(G, 3C), then

JK f (s))ds dt

=

f (s), (s) )ds

=
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Finally assume h > 0 and let E Cc(G, 3C). Because t-+(O t(m(h)) , )

has compact support, obviously

Ot(m(h))dt) , ) =

And because JK 9t(m(h))dt <_ f 0t(m(h))dt = J h(t)dt 1 we get that

fK 0t(m(h))dt p f 0t(m(h))dt.

The general case follows by polarization.

We now prove the main theorem in this section.

3. 11 Theorem. M ®a G = {x E M 9) 03(L2(G))10t(x) = x,Vt E G ).

Proof. We have shown already that 0t(x) = x for all t E G and
x E M Oa G. Conversely take a x E M 0 ((L2(G)) such that 0t(x) = R.
We will now show that x E M 9a G. Fix a function f E Cc(G) and
normalize it so that f f(t)dt = 1 and define OK as in the previous lemma
for any compact set K in G by OK(s) = fK f(st)dt. By the same lemma
m(OK) = fK Ot(m(f))dt. Put

xK = f 9t(m(OK)x m(f))dt.

Then from lemma 3. 9 we know that xK E M Oa G. We will now show that

for any h E Cc(G) we have xKm(h) - x m(h) and m(h)iK - m(h)x. Then
it will be easy to conclude that x E M 0a G. So choose h E Cc(G), then

xKm(h) = f et(m(OK)x m(f))m(h)dt = f 0t(m(OK))x Ot(m(f))m(h)dt.

Now as before t - 0t(m(f))m(h) has compact support, independent of K,
so we are only integrating over a compact set, and then by lemma 3. 4
we have o-weak continuity. Then if K increases, m(OK) - 1 by lemma
3. 10 as f is normalized such that f f(t)dt = 1. Then

LKm(h) - J 0t(1)5E 0t(m(f))m(h)dt = x f 0t(m(f))m(h)dt = x m(h).

To show that m(h)xK - m(h)x is less immediate:
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m(h)RK = J m(h)6t(m(OK))x Ot(m(f))dt

= f (JK m(h)Ots(m(f))x Bt(m(f))ds)dt

= JK(f m(h)Bts(m(f))x Bt(m(f))dt)ds

= JKJ o(s)_1m(h)Bu(m(f))x B _1(m(f))du ds
us

= J JK o(s-1)m(h)Bu(m(f))x B _1(m(f))ds du
us

= 55K 1 m(h)9u(m(f))x 0us(m(f))ds du

= f m(h)Bu(m(f))x 9u(m($ K_1))du.

Again we can use Fubini as we are only integrating over compact sets.
Similarly as for RKm(h) also here we are integrating u only over a
compact set, namely the support of u - m(h)Bu(m(f)) which is independent
of K. Then as K increases, also K-1 will do so and m(O 1) 1.

K
Then as for RKm(h) also here

m(h)xK - m(h)x.

Now by similar methods as in [12] we can show that x E M ®a G. Indeed

let y E (M ®a G)', then

m(h)y x m(h) = lim m(h)y xK m(h)
K

= lim m(h)RK y m(h)
K

= m(h)x y m(h)

where we have used that xK E M ®a G. Finally let m(h) 1` 1 and we get
y x = x y. This completes the proof.

To see more clearly what the above method has to do with tech-
niques in [12], remark that m(h)RK - m(h)x implies that _*

Then take x=x* and h=h so that not only RKm(h) - xm(h) but also
-* m(h)-t m(h). Then if ECc(G, C) and h= 1 on the support of so that
m(h)o= we would get xK yx . In particular M aG)s

The fact is that this is now true for a dense set of vectors.
Now it is obvious to obtain a characterization of the commutant of

M ®a G if a is spatial.
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3. 12 Theorem. If a is spatial, that is if there exists a con-
tinuous unitary representation a : s - as of G in 3C such that
a s(x) = as xa* then

S

(M ®a G)'= {x'®1, as®pSIX' EM', S EG)11

Proof. By theorem 3. 10 we have

M ®a G = {xEM ®63(L2(G)) I6t(x) = x, Vt E G ).

Now 0t(x) = x means (at ® pt)x(at ®pt)* = x as 0t = at ® ad pt. Hence

M®aG=M®63(L2(G)) n {as®psIs EG}'

and (M®a G)'=((M'®1) u {as®psls EG})".

To finish this section, as promised we give a proof of proposition
2. 13 of the end of the previous section. We give here a more precise
formulation.

3.13 Proposition. Let M and N be von Neumann algebras
acting in Hilbert spaces 3 and 3C respectively and let T be an iso-
morphism of M onto N. Suppose a and 0 are continuous actions of
G on M and N respectively, related by T(at(x)) = 9t(T(x)) for all
x E M and t E G. Then T= T® 1 is an isomorphism of M ®h G onto

N ®R G such that T( a(x)) =1ra(T(x)) where x E M and « and 7a are the
representations as defined in 2. 4 associated to a and 0 respectively.

Proof. As was proved in lemma 3. 1 we have M ®a G S M ®63(L 2(G))

and NO
0

G S N 0 63(L2(G)) and M ® 63(L2(G)) -N 0 G(L2(G)) so that
is well defined on M ®a G.

From lemma 3. 8 we know that

f at(x) 0 Pt mf pt dt = f f(t)7a(at(x))dt

for any xEM and f E CC(G).
Apply T = T 0 1 to this equation. Then
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J T(at(x)) ®Pt mf pt dt = J f(t)T(ra(at(x)))dt

t(T(x)) ®Pt mf pt dt

= J f(t)irR(Rt(T(x)))dt

by lemma 3. 8 applied to N and R.
Hence f f(t)7; 9(Pt(T(x)))dt = J f(t)T(na(at(x)))dt for all f E C(G).

So as before n0(T(x)) = T(na(x)). Obviously T(A(s)) = A(s) and it follows

that

T(M®a G)=N®R G.

This completes the proof.

4. DUALITY

In this section we will assume that G is commutative, and we
will consider the dual group G of G. If p is a character in G, then
(s, p) will denote the value of p in the point s c G. G is again a locally
compact group and we will write dp for the Haar measure on G. We
assume that the Haar measures on G and G are normalized in such a
way that the Fourier transform becomes a unitary operator.

We will now define an action a of G on M ®a G in such a way
that the crossed product (M ®a G) ®« G can be shown to be isomorphic
to M ®B(L(G)).

4. 1 Notation. For every character p E G we denote by
unitary operator on L

2
(G) defined by

(vpf)(s) = sue) f(s) for all f E Cc(G).

vp the

It is easily seen, that such an operator vp exists and is unitary,
and that v is a representation of G in L2(G). Because the topology

on G is precisely the one of uniform convergence on compact sets we
will have that p -+ vpf is continuous for every f E Cc(G). This implies
that v is a continuous representation.

We will now show that (1 0 vp)x(1 0 vp)* E ME) a G for any
EM®a G.
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4. 2 Lemma. vp As v' = (s, p)xs for all s E G and p E G.

p E a.

so that

Proof. Let f E C(G), then

(vpAsv*pf)(t) _ (t, p)(A vp*f)(t)

(t, )(vp*f)(s-1t)

= t(, p)(s-1t, p)f(s-1t)

_ (-s,--p-) (x
sf)(t).

4. 3 Lemma. (1 0 vp)n(x)(1 0 vp)* = w(x) for all x E M and

Proof. If E Cc(G, 3C), then as before ((1 ® vp) )(s) = (i-,P) (s)

((1 0 vp)W(x))(s) = (s p)a -1(x) (S)

= a 1(x)(sp) c(s)
S

= (71 (x)(1 ® vp) )(s).

4. 4 Definition. Define ap(x) = (1 0 vp)x(1 (D vp)* for all
x E M ®a G and P E G. As M ®a G is generated by 1r(x) and A(s)

with x E M and S E G, it follows from lemma 4. 2 and 4. 3 that
ii (R) E M ® G. Hence a is a continuous action of G on M ®a G.
The action a is called the dual action.

Of course a is dependent on a because M ®a G depends on a.
The following proposition shows however that in some sense a like
M ®a G is independent of the particular representation of a on M.

4. 5 Proposition. Let M and N be von Neumann algebras and
T an isomorphism of M onto N. Suppose a and P are continuous
actions of G on M and N respectively such that T(at(x)) = t(T(x))
for all t E G and x E M. Then T ® 1 is an isomorphism of
M ® G onto N 0 G such that T(ap(5 )) _ (T(x)) for all x E M Oa G

and P E G.
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Proof. We showed already that T is an isomorphism of
M ®a G onto N ®a G. Now T is also defined on M 0 B(L2(G)) and
it makes sense to write

T(ap(x)) = T(1 0 vp)T(x)T(1 0 V*p).

But T(1 0 vp) = (T ® 1)(1 ® vp) = 1 0 vp (where 1 denotes the identity
in both M and N). So

T(ap(x)) = (1 0 vp)T(x)(1 0 vp)* _ p(T(x)).

In what follows we will consider the crossed product
(M ®a G) 9a6 of M ®a G by the action a of G. It is a von Neumann

algebra acting in 3C 0 L2(G) ® L2(G). Because of proposition 4. 5, also
in studying this crossed product we may assume that a is spatial, since
with the notations of proposition 4. 5 we have that T 0 1 ® 1 will be an
isomorphism of (M ®a G) ®a onto (NO G) ®a G.

We are now going to show that (M ®a G) ®aG is isomorphic to
M 0 (B(L2(G)). We will do this in a number of steps. We will assume
that a is spatial which is no restriction for this purpose, and show that
in that situation, (M ®a G) ®a G is actually spatially isomorphic with
M ® 63(L2(G)) ® 1.

4. 6 Lemma. Denote (Ro = (M ®a G) ®a G, and assume that
a : s - as is a continuous unitary representation of G in 3C such that
at(x) = at x at for all t E G and x E M. Then (Ro is spatially isomor-
phic to the von Neumann algebra 6;1 in RC ®L 2 (G) 0 L 2 (G) generated
by the operators

{x ®1 ®1, as0As®1, 10vp0X Ix M, S EG, pEG}

where Ap is left translation on L 2 (G) by p-1.

Proof. Because a is spatial it will follow from proposition 2.12
that (M ®a G) ®a l is spatially isomorphic to the von Neumann algebra
generated by
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(*) {x®1, 19) vp0 pIxEM®a G, pEG}.

Now also by this proposition W (M ®a G)W* is generated by
{x 0 1, as ®Xs Ix E M, S E G } where W is defined by (W )(s)=ask(s),

EC
c
(G, sC). Furthermore, W and 1 ® vp commute (in a similar way

as 7r(x) and 1 ® vp commute) so that if we apply (W 0 1) (W* ® 1) to

the set of operators in (*) we obtain the lemma.

4. 7 Lemma. 631 is spatially isomorphic to the von Neumann
algebra 632 in JC 0 L2(G) ® L2(G) generated by

{x0191, as®.Xs®1, 10 vp®vpIxEM, s EG, pEG}.

Proof. We use the Fourier transform from L2(G) onto L2(G).
So let 8' be the unitary operator from L2(G) onto L2(G) such that

(Yf)(t) = f (t, p) f(p)dp for all f E Cc(G).

Then to prove the lemma it will be sufficient to show that ax8=* = vg q

for any q E G because then we apply (1 ®1 ®1) (1 ®1 to the
operators generating (R1 to get the operators generating 632. Therefore
let f E C(G), then

(O:Agf)(t) = f
tC P)(Xgf)(P)dp = J (t, p) f(q-'p)dp = J t qp f(p)dp

= (t, q) J (t, q)(9f)(t) = (vgaf)(t).

For the last equality, to be precise, we should have defined vq on
L2(G) by (vgg)(s) = (s, q)g(s) for all g E L2(G). Because also this
gives a unitary operator, and Cc(G) is dense, it follows that one can
write (vqg)(s) = s)g(s) also with our first definition of vq on Cc(G).
Then this is applied to g = H which is in L2(G) but not necessarily in
Cc(G).

4. 8 Lemma. 632 is spatially isomorphic to the von Neumann
algebra G33 0 1 acting in 6C ® L 2 (G) ® L 2 (G) where (R3 is the von
Neumann algebra in fC 0 L (G) generated by the operators

{x®1, as®As, 1®vpIxEM, sEG, pEG}.
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Proof. We will identify L 2 (G x G) with L 2 (G) ® L 2 (G) by

means of the map that associates to f ® g with f, g E Cc(G) the
function (s, t) - f(s)g(t) in Cc(G X G).

Then we define a unitary U in L2(G X G) by (Uf)(s, t)=f(st, t)
where f E Cc(G X G). Clearly U maps Cc(G X G) onto itself and it
is easy to see that it is isometric.

Because vp ® vp and Ar ® 1 can easily be seen to act on
L (G X G) as

((vp ® vp)f)(s, t) = s, p)(t, p)f(s, t)

and ((Ar 0 1)f)(s, t) = f(r-1s, t) where r, s, t E G and
f E Cc(G X G), we get the following relations

p E G and

(U*(vp®vp)Uf)(s, t)=((vp0vp)Uf)(sf 1, t)=(sf 1, p)(t, p)(Uf)(sf1, t)

_ (s, P-) f(s, t) = ((vp ® 1)f)(s, t)

and

(U*(Ar ® 1)Uf)(s, t) = Or 0 1)Uf)(st-1, t) = (Uf)(r-1st-1, t)

= f(r- ls, t) = ((Ar ® 1)f)(s, t).

So U*(vp 0 vp)U = vp 0 1 and U*(lr ® 1)U = Ar 0 1 and if we apply
(1 ® U*) (1 0 U) to the operators generating (R2 we obtain the operators

{x ®1 ®1, as ®As ®1, 1 0 vp ®1 Ix E M, s E G, p E G}

proving the lemma.

We now come to the final step:

4. 9 Lemma. (R
3

is spatially isomorphic to M ® O (L2(G)).

Proof. Let us again consider the unitary W defined by

(W )(s) = as t(s) for E C(G, fC).

We know that A(s) = 1 0 As = W*(as 0 As)W by proposition 2. 12.
Denote by N the von Neumann algebra generated by {vp Ip E G}.
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Then N = N' (see appendix B). As W commutes with 1 ® vp we have
W *(1 0 N)W = 1 0 N.

As W*(x ®1)W = n(x) we also know that W*(M®1)WSM®Q3(L2(G)).

In fact also W*(M 0 1)W S M ® N because 7r(x) and 1 ® vp commute.
So W*(M ® N)W S M 0 N. Now similarly also W(M ® N)W* S M 0 N
so that W*(M 0 N)W = M ® N. Then we obtain that W*(R3w is generated
by W*(M 0 N)W and W*(as ® As)W, that is M ® N and 1 ®A s. Now

because N and Xs generate G3(L2(G)) we get the desired result.

Combining lemmas 4. 6 to 4. 9 and proposition 4. 5 we get the

following theorem, also if a is not spatial.

4.10 Theorem. (M ®a G) ®aG is isomorphic to M 0 03(L2(G)).

We feel that the main point in this result lies in lemma 4. 9 and
especially in the formula

V J X O V

makes it possible to get away with the 'twisting' effect of a in the
definition of ir(x). This is easily illustrated in the finite case. There
7T(x) is given by the diagonal matrix with elements
(a _ 1(x), a 1(x), ..., a -1 (x)) on the diagonal. Including the operators

s1 s2 sn

vp, we include all diagonal operators with scalars on the diagonal. If we

multiply i(x) with the diagonal operator with (1, 0, ... , 0) on the

diagonal we get multiplication with (a (x), 0, ... , 0). So we get also
s

1

multiplication with (x, 0, ... , 0) and we obtain all diagonal operators
with entries in M.

Let us now look closer to the duality structure involved. So we

started off with a covariant system (M, G, a) where M is a von
Neumann algebra, G a locally compact abelian group and a a continuous
action of G on M. To this triple we have associated a new one (M, G, a)

where 1VI = M ®a G, G the dual group and a the dual action. The duality

would be perfect if we got the original triple back by repeating the same
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operation to (M, G, a). Of course the best one can ask for is to get the
original system back 'up to isomorphism' whatever this may mean in the
present situation. Now the dual group of G is again G, so that is no
problem. We also know now what (M 0a G) %b is, namely
M ® 63(L2(G)) up to isomorphism, and here real duality breaks down
already, except in a special, though important case. Indeed if G is
separable, then L2(G) is separable, and if M is properly infinite,
then M 0 63(L2(G)) can be shown to be isomorphic to M (see appendix
C). So in that situation we also get the von Neumann algebra back. The

question remains what happens with the bidual action a, i. e. the action
of G on (M 9 G) 0a G dual to a. There we must first see how a
is transformed under the isomorphism of (M 0a G) ®a G with
M 9) G(L2(G)).

4. 11 Proposition. The bidual action & of G on
(M 0a G) ®a6 is transformed under the isomorphism with M 9) a3(L2(G))
described in this section to the action 6 defined in section 3.

Proof. The bidual action a is dual to a and implemented by
the unitaries 1 ® 1 0 vs where s E G and vs is defined on L2(G) by
(vsf)(p) = s()f(p). So we must see how 1 ® 1 0 vs is affected by the
different steps in lemmas 4. 6 to 4. 9.

First we have the unitary that transforms (M 9) a G) ®a G onto

the von Neumann algebra generated by 15Z (9 1, 1 0 vp 0 Xp I R EM 0aG, p E6).

This unitary commutes with 1 ® 1 9) vs just as W commutes with
1 0 vp, as was shown in that proof, by analogy. Of course also W 0 1
commutes with 1 0 1 9) vs and therefore the bidual action a is trans-
formed to the action on (R1 implemented by 1 ® 1 0 vs.

In lemma 4. 7 we used 1 9) 1 0 to transform (R to (R and
1 2

the action & will be transformed to the action on R2 implemented by

1 0 1 +) Vvs a*. A similar calculation as in lemma 4. 7 shows that

(9vs3:*f)(t) = J tK p)(vs3:*f)(p)dp = J (t, p)(s, p)(T*f)(p)dp

= J ts, p (F*f)(p)dp = f(ts)
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for any f E Cc(G). So Fvsa* = ps as the modular function 0 is
identically 1. Of course P. = d

1
as G is commutative, but we will

s
continue to use ps. In lemma 4. 8 we used the unitary 1 +) U* to trans-
form cR into (R 0 1 and the bidual action will be transformed to the

2 3

action (R3 0 1 implemented by (1 (D U*)(1 9) 1 0 ps)(1 0 U). Now let
f E C(G X G) then

(U*(1 0 ps)Uf)(r, t) = ((1 0 ps)Uf)(rt 1, t) = (Uf)(rt 1, ts)

= f(rs, ts) = ((ps 9 ps)f)(r, t).

Hence U*(1 9) ps)U = ps 9) ps. In particular the bidual action transforms
to the action implemented by ps on (R3. Finally in lemma 4. 9 we used
the unitary W again to go from (R3 to M 0 63(L2(G)) and a we will
transform to the action implemented by W*(1 ® ps)W which is as 0 ps
as for e C(G, 3C) we have:

(W*(1 Ops)W )(t) = at (W )(ts) =a* atas i(ts) = as k(ts) = ((asOps))(t) .t

Now if a is implemented by as, then 0 was implemented by as 0 ps
and this completes the proof.

So we obtain that if y is the isomorphism of (M 0a G) 0a G
onto M 0 (J3(L 2 (G)) obtained in this section, then

y(as(x)) = ot(y(x)) for all t E G

and R E (M ®a G) 0a6. And if we call the covariant systems (M, G, a)
and (N, G, (3) equivalent if there is an isomorphism T of M onto N
such that T(at(x)) _ 0t(T(x)) for any x E M then we get from the system
(M, G, a) to a system equivalent to (M 0 c (L2(G)), G, a 0 ad p).
Unfortunately even if M is isomorphic to M 0 (B(L2(G)) in general one
cannot hope that there is an isomorphism transforming a to a 0 ad p.
Indeed if a is trivial, a 9) ad p is certainly not. However one can show

that there is another, weaker equivalence among triples so that the duality
becomes complete [16]. We will say some more about this in the second
part of our lecture notes.
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To finish this section, let us prove a very much related result.
So we found that the bidual action & was transformed to the action 0
on M 0 03(L (G)). Now in section 3 we found that M ® G were
precisely the fixed points in M 0 G (L2(G)) under 0. It is fairly straight-
forward to check that M ®a G is the image under the isomorphism
of the subalgebra ira(M ®a G) of (M ®a G) %6. So it follows that
na(M 0a G) are the fixed points in (M ®a G) ®a G for the bidual action
a. In fact this is a general result:

4. 12 Proposition. {x E M ® G I a (x) = x for all p E G1=
{W(x)Ix EM).

Proof. We obtained already that ap(e(x)) = n(x). Now if

E M ®a G and ap(x) = x, then if we assume a spatial

x EM0iB(L2(G)) n {as ®ps)' n {1 ®vp)'.

Now as ® Ps = W*(1 0 ps)W and 1 ® vp = W*(1 ® vp)W so that

{as ®ps, 1 ®vpIs E G, P E G 111 = W*(1 9) (L2(G))W.

Therefore R E M®(B(L2(G)) n W*(G(0C) ® 1)W. So x= W*(x ® 1)W
for some x E (B(JC). Now if y E M' then W*(x ® 1)W and y ® 1 will
commute. So for any E Cc (G, 3C) we have (as x as y - y as x as) (s) = 0.

If (e) * 0 this implies xy - yx = 0, so x E M and therefore
x = W*(x ® 1)W = a(x). This completes the proof.

Remark that here we only used that M ®a G was contained in
the set of fixed points in M 9 (L2(G)) for 0. In fact in the commutative
case the commutation theorem of section 3 can be obtained from propo-
sition 4. 12 and the duality theorem.

33



Part 11 The structure of type III
von Neumann algebras

1. INTRODUCTION

Let M be a von Neumann algebra and let 0 be a faithful normal positive
linear functional on M (so that in particular M has to be a-finite). Then
by the Tomita-Takesaki theory there exists a strongly continuous one-

parameter group of *-automorphisms { at } of M characterized by the
K. M. S. -condition. This says that for any pair x, y E M there is a
complex-valued function F, defined, bounded and continuous on the strip
Im Z E [0, 1], analytic inside this strip, and with boundary values

F(t) = ¢((Tt(x)y) and F(t + i) = 0(yat(x)). [13, 15]

Of course the triple (M, R, a) is now a covariant system in the sense
that a : t -+ at is a homomorphism of the additive group R into the
group of *-automorphisms of M, and for each x E M, the map t - at(x)
is continuous with respect to the strong topology on M. To such a triple
is associated a new von Neumann algebra, called the crossed product of
M by a and is denoted by M 9)a R.

Because of Connes' cocycle Radon Nikodym theorem [2] it turns
out that M 0a R is, up to isomorphism, independent of the faithful
normal positive linear functional 0 we started with. So to any a-finite

von Neumann algebra M is associated in a canonical way a new von
Neumann algebra, let us still denote it by M 0a R. Then obvious
questions arise about the relationship between the properties of M and
those of M ®a R. As it turns out the dual action v, as described in
part I of these notes, is important in these matters, and in fact it can be
shown that also the dual action is essentially independent of the faithful
normal functional 0 we started with. All these results are covered in
section 2.
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In section 3 we give a proof of the existence of a semi-finite
faithful normal trace T on M ®a R with the additional property that it
is relatively invariant for the dual action & in the sense that
T(&t(x)) = e-tT(x) for all t E R and x E M ®a R. Because the von

Neumann algebra M here is supposed to be a-finite, it is rather easy
to avoid the theory of dual weights and left-Hilbert algebras and to give
an explicit construction of such a trace. Our method however is entirely
inspired by Takesaki's proof.

Finally in section 4 the cases M semi-finite and M type III are
treated separately. This can be done because the crossed product
M ®a R behaves nicely with respect to central decomposition in M.
Because Tomita-Takesaki theory is essentially trivial for semi-finite
von Neumann algebras, also M ®a R will be easily related to M. In

fact one shows that M ®R is isomorphic to M ®L,0(R) in that case. If M
is type III then it turns out that M®aR is type I Also here our proof is
different from the original one. This result together with the duality the-
orem for crossed products then gives a structure theorem for type III von
Neumann algebras.

For results on Tomita-Takesaki theory we refer to [13, 15, 17].

We will freely use notations and results of part I of these notes. Finally

numbers of lemmas and theorems will refer to results within part II
except if otherwise stated.

2. CROSSED PRODUCTS WITH MODULAR ACTIONS

Let M be a von Neumann algebra on a Hilbert space 3C. We will
make the assumption that M is a-finite throughout this part of these notes
(except when otherwise stated). This will enable us to avoid the theory of
weights and left Hilbert algebras. However it should be said here that
the same (or similar) results are valid in the general case [see 16].

Because M is now a-finite, there exist faithful normal positive
linear functionals on M. Let 0 be such a functional, then by the Tomita-
Takesaki theory there is associated to it a strongly continuous one-
parameter group of *-automorphisms i at }

tER in a canonical way. Then
of course a is a continuous action of R on M and in this part of these
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notes we will be concerned with the crossed product M (D a R. Therefore
let us first recall the following fundamental property [13, 15]

2. 1 Theorem. Let 0 be a faithful normal positive linear
functional on M. Then there is a unique strongly continuous one-
parameter group of *-automorphisms { atIt cR of M that satisfies the
K. M. S. -condition with respect to 0, that is such that for each pair
x, y E M there is a complex valued function F, defined, bounded and
continuous on the strip Im Z E [0, 1], analytic in the interior of this
strip, and such that

F(t) _ o(at(x)y) and F(t + i) = 0(y(yt(x))

for all t E R.

{ at ItER is called the modular automorphism group associated
to 0. We will also call a the modular action associated with 0.
Occasionally we will write as instead of or if there is any possible
confusion.

It is well known by Tomita-Takesaki theory that 0 is invariant
for each at. In fact this can be derived in the usual way by applying the
above K. M. S. -condition to the pair (x, 1). Then F(t) = F (t+i) _ O(at(x))

and repeating F periodically we get an entire bounded function. There-
fore it is constant and in particular

$(at(x)) = 0(x)-

We will consider the crossed product M ®a R of M with the modular
action a. Because of Connes' cocycle Radon Nikodym theorem, it turns

out that M 9) a R is up to isomorphism independent of the faithful normal
positive linear functional 0 we started with. For completeness let us
include here also the proof of Connes' theorem [2].

2. 2 Theorem. Let 0 and p be faithful normal positive linear
functionals on a von Neumann algebra M, and let aO and a' denote the
associated modular actions. Then there is a strongly continuous map
u : t - ut from R into the unitaries of M such that
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(i) o'(x) = utoo(x)ut

(ii) ut+g = uto0(us) t, s E R and x E M.

In a situation like this, the actions o$ and o'p are called weakly
equivalent [16].

Proof. Let 3C= 3C ® 3C and denote vectors in 3C by columns
() with , 71 E JC. Then bounded operators on .C are of the form

77

(c d)
with a, b, c, d E 6,1(X). Let M = { a d) a, b, c, d E M) , then

M is a von Neumann algebra on 3C, in fact it is isomorphic to M ® M2
where M2 is the von Neumann algebra of all complex 2 X 2 matrices.
Define a linear functional 6 on M by

6(a d) = $(a) + p(d).

It is not difficult to check that 6 is again a faithful normal positive linear
functional on M. To obtain the positivity and faithfulness one can use the
fact that every positive element in M is of the form

a b)*(a b) _ (a* c* )(a b)
_ (b*a

+ c*c a*b + c*dc
d c d b* d* c d b*a + d*c b*b + d*d)

with a, b, c, d E M.
We will next consider the modular automorphism group o6 associa-

ted to 0 on M, and see how it acts on the different matrix entries. We
will use the following property: if e E M is such that 6(ex) = 6(xe) for
all x E M then u0(e) = e for all t E R. To prove this one can apply
the K. M. S. -condition for 6 and oc to the pair (x, e) to get a complex
function F as in theorem 2. 1 such that F(t) = 6(08 (x)e) and
F(t + i) = 6(e o8 (x)). Now because of the property of e, again we get
F(t) = F(t + i) and as before that F is constant. But then

6(x oct(e)) = 6(a88(x)e) = 6(xe) for all x E M and t E R and it follows
from the faithfulness of 6 that oe(e) = e for all t E R.

Let us now show that the element e _ 1 0

ii - (0
0) satisfies the above

property. Indeed, for any a, b, c, d E M we have

6((0 0)(c d)) = 6((0
b))

_ $(a)
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and

So it follows that ort(el l) = ell for all t c R. Similarly we have

Ol0(e22)=e22 for all t E R when e22=(0 0

Now trivially for any x E M we have that

(0 0) - (0 0)(0 0)(0 0)

and if we apply vt to this relation we get

A ((o o)) = (o o)°to 0)) o).

So for any x E M and t E R there is an element at(x) in M such that

9 x 0
at(x) 0

A ((0 0))
0 0

It follows immediately that { at }
t ER

is again a strongly continuous one-
parameter group of *-automorphisms of M, and in fact, if we apply the
K. M. S. -condition for 0 and a0 on pairs of the form ((x 0) (y

0))0 0' 0 0
with x, y E M we obtain that also a satisfies the K. M. S. -condition
with respect to $. Then by uniqueness it follows that v$ = a. Therefore
we have obtained that

x) 0
0(( o =

(to(
for all x E M.Q x

0

Similarly one obtains
0 0

0at((0 X)) = for all x E M.
0 Qt (x)

Next we apply at to the following trivial relation

0 00 )_(0°)(°000
1

to get

60((1
o)) = (0 °) t((° 0))(0 0A ) .
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It follows that for each t there is an element ut E M such that

0
't ((1 u)) = (u

t
0)

and taking adjoints

0 u*
1

of ((0 0)) = t
0 0

From the relation

00
0)(0 0) _ (0

0 1

it follows that utut = 1 and similarly utut = 1. Hence ut is unitary.
The strong continuity of t - ut follows from that of o8 at the point
0 0

(1 0).
Finally let us prove that Jut }tom satisfies the relations of the

theorem. First apply at to the trivial relation

(0 x (10

00

)(0 0)(0 0

to get that
0 0 0 0\

CO(

x) 0 0 ut

0 o (x) ut 0) 0 0 0

so that o'() = utot(x)ut for all t e R.

Next

Q0 ((0 0)) e((0 0)) = Q0 (0 0) °S
:))=

) f (sut

° 0 0

and it follows that ut+s = utoti(us).
This completes the proof.

Remark that the relation ut+s = utaa(us) is not really that strange.
Suppose for example that there are strongly continuous one-parameter
groups iat }tER and ibt }tER of unitaries implementing actions a and

of R on M, and suppose that ut = btat e M for all t e R. Then of
course

0t(X) = bt x bt = utat x at ut = ut at(x)ut
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but also

ut+s -
bt+sat+s

- btbsasat

b aaba*at t t s
s

t

utatusa*t
= utat(us).

Let us now consider the crossed product M 9a R where or is now the

modular action associated to the faithful normal positive linear functional

0. Recall that M 0a R is a von Neumann algebra in L2(R, 3C),
generated by operators n(x) and A(t) defined by

(i(x) )(s) = a-s(x) (s)

WOWS) VS - t)

where x E M, t E R and E Cc(R, 3C), the space of continuous functions

on R with values in 3C and compact support.
Using Connes' result, Takesaki now showed that the crossed product

M 0a R is independent of 0 up to isomorphism. The proof is not very
hard:

2. 3 Theorem. Let 0 and >fi be two faithful normal positive

linear functionals on M, and aO and a'' the associated modular auto-
morphism groups. Then M

0
R and M

0 CrIp

R are isomorphic.

Proof. Remark first that M
0

R and M
0alp

R both act on the
60

same Hilbert space. Therefore it will be sufficient to construct a unitary
U on L2 (R, 3C) such that U(M

0
R)U* = M

0
R. Of course we use

the unitaries {ut } in M obtained in the previous theorem.
Define U on L2(R, 3C) by for any 4 E Cc(R, 3C).

By methods similar to those used for defining ii(x), it is easy to show
that U is again in Cc(R, 3C) for E Cc(R, 3C) and that U extends
to an isometry on L2(R, 3C). Moreover (s) for

EC
c
(R, 3C) and U will be unitary as the us are unitaries. (Remark
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that in general u-s will not equal us as {us } need not be a one-

parameter group of unitaries.)
Now denote by n0 and ' the associated representations

on L2(R, 3C). Then, with E CC(R, 3C) and

(Ui0(x)U*4)(s) = u-s(ir (x)U* )(s)

u-soO s(x)(U* )(s)

=

(YS(x) (s)

= (ir ,(x) )(s)

and

(UA(t)U*)(s) = u-s(X(t)U*)(s)

u-s(U* )(s - t)

- u-sut-s s - t

u-s(u_sOro (ut))* (s - t)

u-saOs(ut)u*s (s - t)

= QS(ut) (s - t)

= QS(ut)(X(t))(s)

_

s ER,
of M

So U?r0(x)U* = n(x) for all x E M and UX(t)U* = n,(ut)X(t). It follows

already that U(M ' R)U* S M ®o R. Now we also get U*rr (x)U= ni()

and X(t) = U*rrlp(ut)U U*X(t)U so that U*x(t)U = n (ut)A(t) and it also
follows that U*(M ®A R)U S M ®oO R. Therefore we have equality and

the proof is complete.

41



So to any or-finite von Neumann algebra we have associated a new

von Neumann algebra in a canonical way. Then the obvious questions
arise about the relation of the properties of both von Neumann algebras.
Very much related to those questions will be the dual action. Indeed

because R is a commutative group we can define a dual action & on
M ®o R of the dual group of R which we of course identify with R
itself as usual by putting (s, t) = eits Recall that the dual action was
defined by means of a unitary representation v of the dual group G
on L2(G). This was defined by (vpf)(s) = (s, p)f(s) for f E Cc(G). So

here we have (vtf)(s) = e-itsf(s) for any f E Cc(R). Now we also had
identified JC 0 L

2
(R) and L

2
(R, JC) in such a way that for any E x

and f ECc (R) the vector 0 f was considered as a function in
Cc(R, 3C) with values ( 0 f)(s) = f(s) for s E R. Then the dual action
on M 0o R was defined by

&t(x) _ (1 0 vt)x(l 9) vt) with x E M 00, R.

We have seen that up to isomorphism, the crossed product M 0o R was
independent of 0. In the following sense this is also true for the dual
action.

2. 4 Proposition. Let 0 and be two faithful normal positive
linear functionals on M, and as before let vO and v* be the associated
modular actions. Then if y is the isomorphism of M 0

,
R onto

Q

M 0
1p

R obtained in theorem 2. 3 we will have
Q

(y(X)) = (X))

for R E M ®o R, where &0 and A are the actions dual to Qr and a*

respectively.

Proof. Let { ut } be the unitaries of theorem 2. 2 and let U be
defined as in theorem 2. 3 by Then clearly
U(1 0 vt) = (1 0 vt)U. Then
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& (YO)) _ (1 0 vt)uxU*(1 ® vt)

= U(1 0 vt)x(1 ® vt)u*

= U &i(x)U*

So to a a-finite von Neumann algebra M there is a now associated in a
canonical way a new von Neumann algebra, together with a strongly
continuous one-parameter group of *-automorphisms. It makes sense
to denote this new von Neumann algebra simply as M ®a R and the one-
parameter group as &. The couple (M ®a R, a) is defined up to iso-
morphism (in the above sense) by M. In the next two sections we will
see what properties can be obtained about M ®a R and the action Or

from properties of M. Let us finish this section here by remarking
that M can be recovered from the pair (M ®a R, &). Indeed by

proposition 4. 12 of part I we know that M is isomorphic to the fixed
points in M ®a R under &. So

M= {x EM®aRI&t(x)=x, Vt ER}.

If M is properly infinite there is another way of recovering M from
M ®a R and or. Indeed, as we have seen (M 0 R) 0 R = M ®63(L Z(R)) = M

so that M is the crossed product of M ®a R by the action & of R. We
also mention here that the actions a on M and a 0 ad p on
M ® 33(L2(R)) are weakly equivalent in the sense of [16, theorem 2. 2].
This makes the duality in section 4 of part I in some sense more com-
plete.

3. THE SEMI-FINITENESS OF M ®a R

In this section we give a proof of the fact that M ®a R is semi-finite. In

fact there always exists a faithful normal semi-finite trace T on
M ®a R such that T(&t(x)) = e-tT(x) for all x E M ®a R. Such a trace
is called relatively invariant for &. We give an explicit construction of
such a trace, and we should mention here that we were very much
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inspired by Takesaki's approach [16].
So assume that 0 is a faithful normal positive linear functional

and that or is the associated modular action. We may assume the
existence of a separating and cyclic vector w E X such that
O(x) = (xw, w) for all x E M, and of a strongly continuous one-
parameter group { at }

tER
of unitaries such that vt(x) = at x at and

atw = w for all t E R. This follows easily from the G. N. S. -con-

struction associated with 0 because 0 is invariant for or. Of course

one could also consider Alt for at where A is the modular operator
associated to w.

Before we start let us first agree on a number of notations.

3. 1 Notations. Denote by if the Fourier transform in L2(R); so

(31)(t) =
1

f e-itsf(s)ds for all f E Cc(R)
-vr2 _7j

where now ds is the Lebesgue measure on R. Then iF is a unitary in
L2(R) and we have *Xs`,f = v-s for all s ER by a straightforward
calculation. Let f c L .,,(R) and let as before denote by m f the multi-
plication operator in L2(R) by the function f. Also denote Xf = *mfW

and X(f) = 1 9 Xf. Because mf belongs to the von Neumann algebra
generated by the operators {vs, s E R 1, also Xf will belong to the one
generated by {XS, s E R } and therefore X(f) E M ®o R [appendix B].

Finally let K be any compact subset of R, define
fK(s) = XK(s)exp 2 and K = w ®3'*fK. We put TK(x) = kK)

for any x E M 0o,R. We will show that TK increases with K, and
increases to the desired trace. We need a number of lemmas.

3. 2 Lemma. For any pair f, g E L 2 (R) and X E M we have

(71(x)w 9) f, w 0 g) = $(x)(f, g).

Proof. (7r(x)w ® f, w ® g) = f ((n(x)w 9) f)(s), ((o 9 g)(s))ds

= f (o-s(x)f (s)(0, g(s)w)ds

= f $(o-s(x))f(s)3; s)ds

44



= O(x) f f(s)gTs-)ds

= O(x)(f, g).

3. 3 Lemma. If f E Cc(R) and has support in the compact set K,
then

TK(7T(x)X(s)A(f)) = 21 f(i + s)$(x)

where

f(z) =
Zn

f e iztf(t)dt

for all complex z.

Proof. TK(1r(x)X(s)X(f)) _ (i(x)X(s)X(f)w
E)

*fK, w ® *fK)

_ (71(x)w 0 XsAfg'*fK, w & *fK)

_ $(x)()L sXfF*fK, *fK)

_ $(x)(vsmffK, fK)

_ $(x) f e- itsf(t)XK(t)etdt

= ¢(x) J e- its etf(t) dt

= $(x) 42v f(i + s)

where we have used lemma 3. 2 and the fact that f has support in K.

3. 4 Lemma. Let f and g be continuous functions with support
in a compact set K and such that the Fourier transforms are again L1.
Then

TK(n(x)X(f)X(Y)X(g)) = TK(1r(Y)X(g)r(x)X(f))

Proof. Because the Fourier transform f of f is again L1 we
have that f(t) = 2 f eitsf(s)ds. So, using methods as in part 1,
section 3, we also have mf =

2n
f f(s)v-sds in the or-weak topology, and

applying a* T that

Xf =
2n

J f(s)X-sds .
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So TK('H(x)X(f)7T(Y)X(g)) = 2 J

f f(s)T (Y))X(-s)X(g))ds2 K s

= J f(s)g(i - s)$(xo-s(Y))ds

by lemma 3. 3.

Now by the K. M. S. property there is a complex valued function F,
defined, bounded and continuous on the strip Im z e [0, 11, analytic
inside this strip, and with boundary values F(s) = O( s(x)y) = O(xa s(y))
and F(s + i) = 4(yvs(x)). Now because f and g have compact support,
f and g will be analytic everywhere and we apply Cauchy's formula to
the function f(z)g(i - z)F(z). We integrate along the curve

-N + i N+i z=t+i

W A.

-N N
z = t

Let us show that the integrals over the vertical lines tend to zero when
N - °°. First remark that for any a e [0, 1] we have

f(N + ia) _ 1 J e-iNteatf(t)dt

so that lim AN + ia) = 0 because the Fourier transform of any L1-

function, and therefore of any Cc(R) function tends to zero at infinity.
Also

f(N+ ia)I < 2 (J If(t)Idt)sup (max(1, et)).
tEK

Similarly g(i - N - ia) = g(-N + i(1 - a)) is uniformly bounded and tends
to zero for N - oo. Then by the dominated convergence theorem we have

lim Jo f(N + ia)g(-N + i(1 - a))F(N + ia)da = 0.
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Similarly for the other vertical line and it follows that

f+ f(s)g(i-s)F(s)ds =
f+.f(s+i)g(-s)F(s+i)ds = f+g(s)f(i-s)F(i-s)ds.-00

Now F(s) = $(xv_s(y)) and F(i - s) = q(yc_s(x)) so that

TK(7T(x)X(f)r(Y)X(g)) = f f(s)g(i - s)4(xo_s(Y))ds

= f g(s)f(i - s)O(ya-s(x))ds

and therefore by symmetry we get

TK(r(x)X(f)7T(Y)X(g)) = TK("(Y)X(g)'T(x)X(f)).

3. 4 Lemma. If K is a compact set in R and PK = X(XK) then

TK is a trace on PK(M ®o R)pK.

Proof. Let K1 be a compact set whose interior contains K,
choose a C00-function f0 with support in K1 and such that f0(s) = 1
for s E K. Then for any s, t E R we will still have that f = vsf

0
and

00g = vtf0 are C -functions with support in K1 and we can apply the
previous lemma to f and g. Because Af

= 5*mfa and mf = vsmf
we get A(f) = X(s)X(f0) and so

TK (r(x)X(s)X(f 0)ir(Y)X(t)X(f 0)) = TK (n(Y)X(t)X(f 0)'A(x)X(s)X(f 0).
1

By linearity and continuity and the fact that operators of the form
ir(x)X(s) span a dense subalgebra of M ®o, R we get

TK (XX(f0)YX(f0)) = TK (YX(f0)xA(f0))
1

for all x, Y E M ®o R. Then replace x and Y by PKxPK and
PKY PK' as PKX(f 0) = X(XKf o) = X(XK) = PK

TK (PK x PK Y PK) = TK (PK Y PK x pK).
1

Finally

we obtain

0

47



=w®X a* =w®F*m f
pK 1 XK 1 XK K1

= w ®5:*fK as fK(s) = XK(s)es/2

= K

and TK restricted to pK(M (&a R)pK equals TK. This completes the
1

proof.

We finally come to the main theorem

3. 5 Theorem. Define T = up TK on (M ®a R)+, then T is a
faithful normal semi-finite trace on M ®, R such that
T((Tt(R)) = e-tT(R) for all t E R and R E (M ®(T R)+.

Proof. Suppose that K and K1 are compact in R and that
K S K1. Then

TK (11(X)X(s)) = O(X) fK e- its etdt
1 1

as in lemma 3. 3 and therefore it is easy to see that

TK (v(X)X(s)) = TK(I(X)X(s)) + K), (K - K))
1 1 1

so that TK > TK. It follows that T = sup TK defines a map from
K

(M ®a R)+ to [0, -] such that T(R + y) = T(x) + T(y) and
T(ax) = aT(R) for all R, Y E M ®a R and a > 0.

Let us prove that T is a trace. Take R E M ®a R and K, K1
compact with K S K1, then

TK (R*pKR) = TK (PK x*pK X PK
1 1

= TK (pK x pK R* pK) (lemma 3.4)
1 1

= TK(xpK x*).

If K1 tends to R then

T(R* pK R) = TK(x x*) as pK P 1.
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Now T is normal as the supremum of normal functionals, so again by
letting K tend to R we get

7-(X* X) = T(X X*).

Furthermore T is semi-finite as it is finite on a dense subalgebra,
namely U PK(M ®o R)pK.

K
To show that T is faithful, it is sufficient to show that

K }K compact is cyclic for (M ®a R)'. For any x' E M' we know that
x' ® 1 E (M 9) a R)' and (x' ® 1) K = x'w 0 5*fK and those vectors span
a dense subspace of JC 9) L2(R) as w is cyclic for M' and as K runs
over all compact subsets of R.

To complete the proof we show that T is relatively invariant. So

let K be compact and t E R, then vt5*fK = and a straight-
forward calculation shows that avtg'* = Xt. Now

(XtfK)(s) = fK(s - t) = XK(s - t)exp(s - t) /2

= XK+t(s)exp 2 . exp(- t

= e-t/2 . fK+t(s).

Therefore, for any x E (M 0o R)+, we have

TK(Qt(X)) = TK((1 0 vt)X(1 0 vt))

= (x w 0 vt F*fK, w 0 vtg*fK )

= (x e-t/2w E) 3 *fK+t' e-t/2w o

e-tTK+t(x)
.

Then taking supremum over K we get

T(Qt(x)) = e-tT(X).

This completes the proof.

9 *fK+t )

We want to finish this section be some remarks. First, if we look
at the formula of lemma 3. 3, we see that 0 can easily be reconstructed
from T. Indeed for any function f E Cc(R) we will have that
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T(X(f)) < - and that

ON = 1 1 T(v(x)X(f))
211 f(i)

provided of course f(i) * 0. Remark also that the formula in that lemma
is very much related to lemma 5. 19 of [16].

Finally, if the von Neumann algebra is not a-finite the preceding
construction can be modified to work in the case where 0 is a strictly
semi-finite weight, although itwould be more complicated if 0 is just
any faithful normal semi-finite weight.

4. THE STRUCTURE OF TYPE III VON NEUMANN ALGEBRAS

In this section we want to say something about the type of the crossed
product M ®o R given the type of M. Therefore let us first see how
central decomposition in M is reflected in the crossed product.

4. 1 Proposition. If p is a central projection in M, then p ® 1
is a central projection in M ®o R. Moreover Mp is left invariant by
the action a and if v denotes the restriction of a to Mp then

(M ®o R)(p ® 1) = Mp ® R.

Proof. If p is in the centre of M it is well known that at(p) = p
for any modular action. In fact if or is the modular action associated to
the faithful normal positive linear functional 0, then of course
0(px) = O(xp) for all x E M and as in the proof of theorem 2. 3 it would
follow that at(p) = p. Then from a trivial calculation it follows that
77(p) = p 0 1. Now because p E M' it follows that also p 0 1 E(M®R)'
so that p ® 1 is in the centre of M ® R.

Because at(p) = p for all t it also follows that a leaves the von
Neumann algebra Mp invariant.

Finally (M ®a R)(p (9 1) is the von Neumann algebra on
p3C 0 L2(R) generated by 7i(x)(p 0 1) = ir(xp) and X(s)(p®1) = p ® Xs.
v(xp) restricted to the space L2(R, p3C) is clearly vvQ(xp) where
is the representation associated to v and p 0 As restricted to
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L 2 (R., pJC) is 1 OXs .

Then the result follows.

We will now consider the cases M semi-finite and M type III
separately. This makes sense because of the previous proposition.

If M is semi-finite it is well known that the modular automorphisms
are inner [15]. In fact this could be deduced from Connes' cocycle
Radon-Nikodym theorem for weights and the fact that the modular action

associated to the trace is the trivial one. In an appendix we present a

fairly easy proof of this fact for or-finite von Neumann algebras
(appendix D).

We get the following result for semi-finite von Neumann algebras:

4. 2 Proposition. If M is semi-finite there exists an isomorphism
of M 9) o R onto M 0 LOO(R) that transforms the dual action to 1 9) d

where A acts on LJR) by (Atf)(s) = f(s - t) as before.

Proof. So assume that t - at is a continuous unitary representa-
tion of R on J C with at EM and o(x) = atxat for all t E R and
x e M. Then as we have seen in part 1, there is an isomorphism of
M ®o R onto the algebra generated by {x ® 1, at 0 Xt } and the dual

action is transformed to the action implemented by 1 9) vs. Now

because at E M we have at 0 Xt E {x 0 1, 1 0 At } ", and also
1 " . Therefore

(M ®a R) = {x 0 1, 1 9)
At

} ". Then by applying the Fourier transform
we get an isomorphism of (M ®o R) onto M 9) L JR) because
ivt } " = L .(R) and under this isomorphism the dual action is transformed

to the action implemented by 1 0 At.

So we see that the whole theory is not interesting for semi-finite
von Neumann algebras as was to be expected because Tomita-Takesaki
theory is more or less trivial in this case. The type III case is much
more interesting, as we will show it turns out that in that case M 0o R
is of type II O.

Let us first show that if M 9)o R is type I, then M is semi-finite.
Then the result on type III will follow easily because the crossed product
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behaves nicely w. r. t. central decomposition. We have divided the
argument in a number of steps.

4. 3 Lemma. Let T be the relatively invariant trace on M 0o R
constructed in section 3. Then there is a projection p with the properties
that T(p) < - and &t(p) is increasing when t decreases and

lim &t (p) = 0 HM &t(p) = 1.
ty+ W t-- Qo

Proof. With the notations of the previous section, let
p = X(X(_W0]). For any compact set K in R we have

,

(w, w)(0 *m 0z0:*fK, *fK
X(_ °O, 0]

_ (w, w)(m f , f )X(_ ©, 0] K K

0
00 XK(t)etdt._ (w, w) f

So T(p) = (w, (0) f 0 etdt < 0o.

Furthermore &t (p) = 1 ® vtAX vt
(_ 00, 0]

= 1 0 vt3*m 9vtX, 0]
= 1 F*X-tmX Xta

= X(X(_.O, _t])

Then the result follows easily.

Now let q = c(p), the central support of p in M (&o R. Clearly
&t(q) = c(8t(p)) and because &t(p) increases when t decreases, the same
will be true for &t(q). Because &t(q) > 6t(p) we will still have that

lim et(q) = 1
t-,- 00
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can only say that the limit exists. Here we will use the following lemma.

4. 4 Lemma. If e is an abelian projection in a von Neumann
algebra then e c(f) f for any projection f where c(f) is the central
support of f and -c stands for the ordering in the projections relative
to the von Neumann algebra.

Proof. el = e c(f) is again an abelian projection, majorised by
c(f). Then it follows that c(e1) s c(f) and since e1 is abelian by [6,

p. 239] it follows that e1 f.

4. 5 Lemma. Suppose now that M 0o R is type I. If q = c(p),
the central support of the projection p of lemma 4. 3, then crt(q) is
increasing when t decreases and

lim &t(q) = 0
00

lim &t(q) = 1.
t~- 00

Proof. As &t(q) = c(&t(p)) we remarked already that also &t(q)
will increase when t decreases. And as &t(q) ? &t(p) we also have that
lim &t(q) = 1 when t - - °°. Now let qo = lim &t(q) for t - +°°. For
any abelian projection we have that a&t(q) = e c(&t(p)) -< &t(p) by the
previous lemma so that T(e &t(q)) <_ T(&t(p)) = e-tT(p). As T(p) < -
we will have by the normality of the trace that T(e &t(q)) - T(e q0) when
t - +- and that T(e q0) = 0. Then because T is faithful we get
e q0 = 0 for all abelian projections e. Because q0 is in the centre and
M ®o R is type I this implies that qo = 0.

4. 6 Proposition. If ME) o R is type I then M is semi-finite.

Proof. With the notations of before let q1 = q - &1(q). Then q1
is a central projection with the property that &t(gI)gi = 0 if It I _> 1.

Indeed

q = &0(q) >_ &1(q) and &t(q1) = &t(q) - &t+1(q)

so if t 1, &t(ql) <_ &t(q) <_ &1(q) and &t(g1)g1 = 0. If t <_ -1 then
of+1(q) > q ' q1 so that &t(g1)g1 = 0. We also have that
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°k(ql) = ok(q) - &k+l(q) are mutually orthogonal when k E Z and that
+00

7(g) = 1 b lemma 4 5 Now define T on M+ byykl..o
k=- co
Ta(x) = T(n(x)g1). Because T is a trace and q1 is in the centre, also
To will be a trace. It is also normal as T is normal. To prove that
To is faithful assume x E M+ and T0(x) = 0, then T(71(x)g1) = 0 and
n(x)g1 = 0 as T is faithful. Also ak(n(x)gl) = n(x)ak(gl) = 0 for all

+00
k E Z and because ak(gl) = 1 it follows that n(x) = 0. Then x = 0

k=- ao
as n is faithful. (Remark that it is in fact only to prove the faithfulness
of TO that we need that M ®o R is type I. )

Let us now show that TO is semi-finite. Therefore let f be any
non-zero projection in M. If n(f)g1 = 0 we would have as before that
n(f) = 0. So by the semi-finiteness of T there is non-zero projection
e E M 0v R such that T(e) < - and e s n(f)g1. Define

1n
hn = fnnl at(e)dt = 10 at( I ak(e))dt.

k=- n

Because e s q1, we also have ak(e) ak(g1) and therefore also
n

{ ok(e) IkEZ are mutually orthogonal. So E ak(e) increases to a
-n

projection. Because of the normality of the map f
0

atdt it follows that
also hn will increase to an element h E M 0Cr R with 0 h 1.

Obviously at(h) = h for all t E R. Now e <_ n(f) so that
at(e) < at(n(f)) = n(f). This means that r(f)at(e)n(f) = at(e) and so also
n(f) h n(f) = h, and it follows that h < n(f). Now T(h q ) =

n+1 1sup f-n T(at(e)g1)dt. But e < q1 so that at(e) < a- (q1) and as
at(g1)g1 = 0 for all It 1 ? 1 also at(e)g1 = 0 for all It 1 ? 1 and
therefore

T(h q1) = fl1 T(at(e)g1)dt

f
1

e-tT(e a-t(g1))dt

fll
e-tT(e)dt < 0 .

Because h E M ® R and at(h) = h, there is an element x E M such
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that n(x) = h. Then h < w(f) x f and T
0
(x) = T(h q

1
) < -. This

implies that TO is semi-finite on M. Then the proof is complete.

4. 7 Theorem. If M is of type III, then M ®9 R is of type U.

Proof. Let p be the largest central projection in M ®9 R such
that (M ®o R)p is type I. Such a projection is invariant for any
*-automorphism and in particular vt(p) = p. Then is of the form
n(p) with p E M and because n(p) is central in M a R, we must have
that p is in the centre of M. Therefore we can apply proposition 4. 1
and we obtain that

(Mp ®Q R) = (M ®9 R)(p ® 1).

Of course a is the modular action on Mp associated with the restriction
of the original functional 0 to Mp. Now p 0 1 = n(p) and
(M ®o R)(p 0 1) is type I and by the previous result Mp is semi-finite.
Because M is type III we must have p = 0. So M ®o R is type II.

Now let pl be the largest central projection such that
(M ®o R)pl is type III. Again pl = p1 0 1 for some central p1 E M
and Mp1 0& R would be finite. Then Mp1 would be finite as a sub-
algebra which implies p1 = 0 as M is type III. This shows that

M ®a R is type II.,.

If we combine this result with earlier results we obtain the funda-
mental structure theorem of Takesaki:

4. 8 Theorem. If M is a type III von Neumann algebra there is a
type II.. von Neumann algebra M

0
with a continuous action 8 of R on

Mo, admitting a relatively invariant trace such that M = M
0

®B R.

Takesaki also shows that the pair (Mo, 8) is uniquely determined

by M up to weak equivalence. To prove this result we would have to
use the modular theory for weights. Remark however that M0 is uniquely
determined when considered as the crossed product of M with modular
actions.
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Appendices

Let X be a locally compact Hausdorff space, and ds denote any
positive measure on X in the sense of [1]. Also let JC be a (complex)
Hilbert space.

Al Notation. By L2(X, 3C) we denote the set of JC-valued
functions on X such that

(i) W-), 77) is measurable for all 77 e 3C where ( , ) denotes
the scalar product in 3C.

(ii) there is a separable subspace X o of X such that c(s) E JCo

for all s X.
(iii) f (s))ds <

Remark that it follows from conditions (i) and (ii) that (( ),( ) )
is measurable so that condition (iii) makes sense. Indeed if { en) n=l, 00
is an orthogonal basis in JC0 then

00

(k(s), (s)) = Z k (g(s), en) 12
n=1

and for each n we have that (( ), en) is measurable.
It is easily verified from the definition that L2(X, 5C) is a vector-

space over C. In fact it can be made into a Hilbert space such that
Cc(X, 3C), the set of continuous SC-valued functions with compact support

in X, is dense in L2(X, fC). We will prove here those two results.
(It will also justify to use the notation L2(G, fC) in section 2 of part I. )

A2 Proposition. If , n e L 2 (X, fC) then (( ), ( )) is
integrable and

17) = f WS), 77(s))ds

is a scalar product making L 2 (X, X) into a Hilbert space.
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We make here the usual identification of functions that are equal
almost everywhere.

Proof. The measurability of 7 1(-)) follows from (i) and
(ii) as above, the integrability follows from (iii) as

I < II c(s) II II,q(s) II. It is clear that the above formula defines
a scalar product on L2(X, SC). The only thing to show is completeness,
and the proof of this is very similar to that of the completeness of
L2(X).

Let n be a Cauchy sequence in L2(X, 3C). By passing to a sub-
sequence we may assume that II n - n+l II < 2-n. Define

k
gk(s) = 1 II n+l(S) - in(s) II

n=1
k

Then gk E L 2 (X) and 11 90 II < II n+l - n 1l 1.
°0 n=1

If g(s) _ II n+l(s) - in (s) II , by the monotone convergence
n=1

theorem also g E L2(X) and IIgli 1. In particular there is a null set
E in X such that g(s) < - for all s E Ec, the complement of E. This

00

means that E (fin+l(s) - in(s)) converges in norm in JC for all s c Ec
n=1

or equivalently that lim cn(s) exists for all s e Ec.
Define (s) = lim n(s) if s E Ec and (s) = 0 if s E E, then

will be the limit of n in L2(X, 3C). Indeed for all ri E JC we have that

WS), 77) = lim(4n(s), 77)(1 - XE(s)) where XE is the characteristic
function of E. Hence (( ), u) is measurable. For each n there is
a separable subspace JCn of 3C such that 4n (s) E 3Cn for all s. If now

X o is the smallest subspace containing all the JCn then X0 is still
separable and c(s) E X o for all s E X. Finally, using Fatou's lemma

f II 4(s) -
in(S)112 ds< lim inf f II m(s) - 4n(s) II gds = lim inf II m- Q1 2

m m

so that given e > 0 there is a n0 such that if n > n0 we have

f II (S) -
n(S)112 ds < e .

This implies that - n E L 2 (X, SC), hence E L 2 (X, 3C) and also that
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III-

Next we show that the set C(X, K) of continuous 3C-valued
functions with compact support in X is dense in L2(X, 3C).

A3 Proposition. Cc(X, 3C) is dense in L2(X, 3C).

Proof. Let us first show that Cc(X, 3C) is contained in L2(X, 3C).

Therefore let E Cc(X, R), then the range of is contained in a com-
pact subset 3C of C. Now such a compact set 3C must lie in a separ-
able subspace of R. To see this choose for every n a finite number of
vectors fi(n), (n) .. , (n) in JC such that balls with radius n

n
centred at those points cover X. Then clearly K is a subset of the
subspace 0 generated by {

(n) I j = 1, kn; n = 1, Hence we

have shown that the range of lies in a separable subspace. The other
two conditions follow immediately so that E L2(X, fC).

To prove the density of Cc(X, 3C), assume E L2(X, 3C) and that

77 ) = 0 for all i E C(X, 3C). Now let E R and f E Cc(X) and
let 77 be defined by 77 (s) = f s (E(s), 0)ds = 0.
This is true for all f E Cc(X) and so (c(s), 0 = 0 a. e.. Choose an
orthonormal basis {en }n_l, - in the separable subspace containing
the range of S. So for any n there is a null set E

n
such that

00(s), en) = 0 for all SEE n. Put E = U En, then ((s), en) = 0
c n=1 cfor all s E E and all n. Hence k(s) = 0 for all s E E so that k = 0

as a vector in L 2 (X, SC).

This proposition justifies the introduction of
completion of Cc(X, ccC).

APPENDIX B

L 2 (X, 3C) as the

Let G be a locally compact group and let ds denote a left invariant
Haar measure on G. Denote by N the von Neumann algebra consisting
of all multiplications on L2(G) by L .(G) -functions. Then N = N', see
for example [6].
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B1 Lemma. N = {mf If EC
c
(G) I", where mf is multiplication by

f on L2.

Proof. Let 0 be a a-weakly continuous linear functional on N
such that O(mf) = 0 for all f E Cc(G). Any such 0 is of the form

00

O= Zl( fn, gn
with fn, gn E L2(G), and

nE1
Ilfn II 2 < - and

n
00 00

Il g II 2 < oO. It follows that h(s) _ f defines an L -
n=1 n n=1 n n 1

function and we have for any f EC
c
(G) that

00

4>(mf) = z f f f(s)h(s)ds = 0.
n=1

This implies that h = 0 as an element in L1. Then for any f EL.. the
above relation implies also that 4>(mf) = 0 and hence 0 = 0.

It follows immediately that 03(L 2 (G)) = { mfAs I f E Cc(G), S E G } "

because if x commutes with all mf, f E Cc(G) it must be an element
in N and if this also commutes with all A with s c G it must be as
multiple of the identity. This result was used in section 3 of part I.

Now let G be commutative.

B2 Lemma. N= {vplp E&}".

Proof. As in the previous lemma let 0 be a a-weakly continuous
linear functional on N such that 4>(vp) = 0 for all p E G. With the
same notations as above we get 4>(vp) = f s( p)h(s)ds = 0. Now the

Fourier transform is injective on L1 so that h = 0, and again 0 = 0.

This result was used in section 4 of part I.

APPENDIX C

If M is a properly infinite von Neumann algebra, then there is a sequence
{

en
} n=l, - of mutually orthogonal projections in M such that

00

I en = 1 and en - 1 in the sense of equivalence of projections ([6,
n=1
p. 298]). Then we have the following.
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Theorem. If 3C is a separable Hilbert space and F.. denotes
G (K), then M 0 F = M.

Proof. Let e be as above and let v be elements in M such
n n

that e = v*v and v v* = 1. If n * m then e e =0 so that
n n n n n n m

vmvn = v memenvn *=O. Let l e i .
} i 1 be matrix units in F

J , j= , °° °°

Then define

k

iZ 1vi
0

eil'

Then

k k k
ukuk=(Z vi 0e1.)(I v.0e.l)= E vlv.0elie.l

i=1 j=1 J J i, j=l J J

k k
= ell = (9) ell.

Similarly
k k

)=(Z v.1
11

&e. )(Z v*9) eukui=1
j=1 J

lJ

k k
Z vi v* ® e.. Z vi vi 9) e..

i, j=11 J i=1 11

k
=1® e...

i=1

A similar calculation would show that, if k > 1,
k

® el i(uk - u1) (uk - ul) _ Z e.
1i=1 +1

(uk - u1)(u - I

k
= 1 ® Z e...

i=1+1 ii
00 CO

Because both e and e converge we obtain that Iuk } is a
i=1 1 i=1 ii

Cauchy sequence in the strong*-topology. Hence if u is the limit, then
u = lim uk and u* = lim Ilk.

It will then follow that u is an element in M 0 F.. such that
u*u = 1 ®e11 and uu* = 1 0 1.

Now define o(x) = u*x u for x E M 0 F °° Then as u *u = 1(Re11
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the range of a is

(1 ® e11)(M ® F00)(1 (9 ell) = M 0 e11'

As uu* = 1, or will be a homomorphism of M ® F., onto M 0 e11'
If a(R) = 0, u*x u = 0, then x = uu* R uu* = 0. So a is an isomorphism.
Now as M,® e11 ~ M we have the result.

APPENDIX D

Let M be a semi-finite von Neumann algebra, 0 a faithful normal
positive linear functional on M and or the associated modular action.
We will show in this appendix that a is inner.

Let T be a faithful normal semi-finite trace on M and let e be
a projection in M such that T(e) < -. Then the restriction of T to

e M e is a faithful normal finite trace on e M e.

Dl Lemma. If T is a faithful normal finite trace on M and ¢
a faithful normal positive linear functional on M, there is a unique
h E M such that 0 < h 1 and T((1 - h)x) = O(h x) = O(x h) for all
x EM.

Proof. Apply Sakai's linear Radon Nikodym theorem [14] to the

functionals T and 0 + T. So there is an h E M such that 0 < h 1

and

T(x) = 2 (0 + T)(Xh + hx)

= T(Xh) + 2 0(xh + hx).

Then T((1 - h)x) = 2O(xh + hx). Replacing first x by hx and next x
by xh we get

T((1 - h)hx) = 20(hxh + hex)

and

T((1 - h)xh) = 2cb(xh2 + h x h).
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As T((1 - h)hx) = T((1 - h)xh) we obtain O(xh2) _ O(h2x) for all x E M.
From this it follows that also O(xh) = 0(hx) for all x. Indeed we would

get O(xh4) = O(h2xh2) = O(h4x), and similarly for any even power
O(xh2n) = O(h2nx) and approximating h by polynomials in h2 we get

the desired result.
So we get 7-((1 - h)x) = 0(hx) = O(xh) for all x E M. To prove

uniqueness, suppose also T((1 - k)x) = 0(kx) for all x E M with k E M.
Then T(x) = (T + 0)(kx) = (T + 4)(hx) for all x. As T + $ is faithful
this implies k = h.

D2 Lemma. Let T be a faithful normal semi-finite trace on M
and 0 a faithful normal positive linear functional on M. Then there is a
h E M with 0 < h s 1 such that T(1 - h) < - and 0(hx)=O(xh)=T((1-h)x).
Moreover h and 1 - h are injective.

Proof. Choose a net I e a } of projections in M such that
T(ea) < - and ea increases up to 1. Then apply the previous lemma

to the restrictions of 0 and T to ea M ea to obtain an element
ha E ea M ea with 0 < ha < 1 such that T((ea-ha)eaxea)=O(haeaxea)
for all x E M. That is the same as

T((1 - ha )x ea ) = $(ha x ea)

for all x c M.
Because the unit ball in M is a-weakly compact we can assume

(if necessary by taking a subnet) that ha converges or-weakly to an element
hEM with 0<_h-1.

Now if ea < ea then xea = x ea ea and we get

7-((1 - ha)x e)3 ) = T((1 - ha)x eQea) = $(ha x e0ea) = $(ha x ea)

Because T(ea) < - we have that T( ea) is or-weakly continuous so that
if we take the limit over a we find T((1 - h)x e = O(h x ea) and with

x = 1 in particular we get T((1 - h)e0) = O(h ea). By normality

T((1 - h)ea) will increase to T(1 - h) and therefore T(1 - h) = 0(h) < 00.
Therefore also T((l - h) - ) is a-weakly continuous and in the limit over
a we get
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T((1 - h)x) = 0(hx) for all x E M.

Similarly or by taking adjoints we get T((1 - h)x) = O(xh).
Finally h and 1 - h must be injective as ¢ and T are faithful.

Of course we have essentially proved here the well known Radon-
Nikodym theorem for semi-finite von Neumann algebras.

D3 Lemma. With T, 0 and h as in lemma 2, the modular
automorphism group associated to 0 is given by

Qt(x) =
h-it (I - h)it x hit(1 - h)-it

forall xEM and tER.

Proof. By spectral theory one can show that h1Z is well defined
for Im z_ 0, that it is continuous and uniformly bounded on finite hori-
zontal strips, and that it is analytic for Im z < 0, with respect to the
strong topology [13]. Similarly for (1 - h)1Z. Then it follows that for
any x E M the function z - h iz(1 - h) iz+1 x hiz+1 (1 - h)-1Z is well
defined, bounded and strongly continuous for Im Z E [0, 1], and strongly
analytic inside this strip. Then for any pair x, y E M the function F
defined by

F(z) = $(h-iz(I - h)iz+1x hiz+1 (I - h)-izy)

is well-defined, bounded and continuous for Im z E [0, 1], and analytic
inside. Moreover, if we define at by the above expression, we find

F(t) = $(h it(1 - h)it(1 - h)x hlth(1 - h)-ity)

= $(at((1 - h)x h)y)

and

F(t + i) = 0(h-ith(1 - h) it x hit(1 - h)-it(1
- h)y)

= $(h at(x)(1 - h)y)

= T((1 - h)at(x)(1 - h)y)

= T((1 - h)y(1 - h)at(x))
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= $(h y(1 - h)ot(x))

= $(Y(1 - h)at(x)h)

= $(Y qt((1 - h)x h)).

Therefore the K. M. S. -condition is satisfied for any pair of the form
((1 - h)xh, y). We will now show by an approximation argument that the
K. M. S. -condition is also satisfied for any pair (x, y), see also [13].

We first need the at-invariance of 0. This can be obtained directly
from the definitions. It also follows from the K. M. S. -condition applied
to the pair ((1 - h)xh, 1). Indeed as in the remark following theorem 2. 1

of part II we obtain that o(at((1 - h)xh)) = 0((1 - h)xh) for all t E R. Now
because 1 - h and h are injective any x E M can be approximated
strongly by a bounded sequence ixn } in (1 - h)Mh and therefore also
O(ot(x)) = O(x) for all t E R and X E M.

To obtain the K. M. S. -function for the pair (x, y) in M, consider
the K. M. S. -functions Fn associated to the pairs (xn, y) where again
{xn } is a bounded sequence in (1 - h)Mh converging strongly to x.

Then, using the invariance of ¢ we get

Fn (t) - Fm(t) I = I $(at(xn - xm)Y)) : $((xn - xm)*(xn - xm)) a O(Y*Y) a

and Fn(t) - Fm(t) - 0 uniformly in t. Similarly Fn(t+i) - Fm(t+i) - 0
uniformly in t and therefore by the maximum modulus principle for the
strip it follows that Fn(z) - Fm(z) -+ 0 uniformly in z when n, m -+ oc.
Then F(z) = lim Fn(z) will define the right K. M. S. -function for the
pair (x, y). Finally because the modular automorphism group is the
unique strongly continuous one parameter group of *-automorphisms

satisfying the K. M. S. -condition with respect to 0 the result follows.

D4 Theorem. If M is semi-finite, then every modular action
is inner.

Proof. Follows immediately from lemma D3.
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